Chapter 3: Group structure

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra

Subgroup lattices

Let's compare the two groups of order 4:

- Proper subgroups of $V_{4}:\langle h\rangle=\{e, h\},\langle v\rangle=\{e, v\},\langle r\rangle=\{e, r\},\langle e\rangle=\{e\}$.
- Proper subgroups of $C_{4}:\langle r\rangle=\left\{1, r, r^{2}, r^{3}\right\}=\left\langle r^{3}\right\rangle,\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\},\langle 1\rangle=\{1\}$.

It is illustrative to arrange them in a subgroup lattice.

Order: 4

2

1

The two groups of order 6

Here are their subgroup lattices:

Intersections of subgroups

Proposition (exercise)

For any collection $\left\{H_{\alpha} \mid \alpha \in A\right\}$ of subgroups of G, the intersection $\bigcap_{\alpha \in A} H_{\alpha}$ is a subgroup.

Every subset $S \subseteq G$, not necessarily finite, generates a subgroup, denoted

$$
\langle S\rangle=\left\{s_{1}^{e_{1}} s_{2}^{e_{2}} \cdots s_{k}^{e_{k}} \mid s_{i} \in S, e_{i}=\{1,-1\}\right\} .
$$

That is, $\langle S\rangle$ consists finite words built from elements in S and their inverses.

Proposition (proof on board)

For any $S \subseteq G$, the subgroup $\langle S\rangle$ is the intersection of all subgroups containing S :

$$
\langle S\rangle=\bigcap_{S \subseteq H_{\alpha} \leq G} H_{\alpha},
$$

That is, the subgroup generated by S is the smallest subgroup containing S.
■ LHS: the subgroup built "from the bottom up"

- RHS: the subgroup built "from the top down"

There are a number of mathematical objects that can be viewed in these two ways.

The two nonabelian groups of order 8

The subgroup lattice of D_{4}

The subgroup lattice of D_{4}

The three abelian groups of order 8

More on subgroups

Tip

It will be essential to learn the subgroup lattices of our standard examples of groups.

Let's summarize the sizes of the subgroups of the groups of order 8 that we have seen.

	C_{8}	Q_{8}	$C_{4} \times C_{2}$	D_{4}	C_{2}^{3}
\# elts. of order 8	4	0	0	0	0
\# elts. of order 4	2	6	4	2	0
\# elts. of order 2	1	1	3	5	7
\# elts. of order 1	1	1	1	1	1
\# subgroups	4	6	8	10	16

Rule of thumb

Groups with elements of small order tend to have more subgroups than those with elements of large order.

One-step subgroup test (exercise)
A subset $H \subseteq G$ is a subgroup if and only if if the following condition holds:

$$
\text { If } x, y \in H \text {, then } x y^{-1} \in H
$$

Subgroups of cyclic groups

Proposition

Every subgroup of a cyclic group is cyclic.

Proof

Let $H \leq G=\langle x\rangle$, and $|H|>1$.
Let x^{k} be the smallest positive power of x in $H=\left\{x^{k} \mid k \in \mathbb{Z}\right\}$
We'll show that all elements of H have the form $\left(x^{k}\right)^{m}=x^{k m}$ for some $m \in \mathbb{Z}$.
Take any other $x^{\ell} \in H$, with $\ell>0$, and write $\ell=q k+r$, where $0 \leq r<k$.
We have $x^{\ell}=x^{q k+r}$, and hence

$$
x^{r}=x^{\ell-q k}=x^{\ell} x^{-q k}=x^{\ell}\left(x^{k}\right)^{-q} \in H .
$$

Minimality of $k>0$ forces $r=0$.

Corollary

The subgroup of $G=\mathbb{Z}$ generated by a_{1}, \ldots, a_{k} is $\left\langle\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)\right\rangle \cong \mathbb{Z}$.

Subgroups of cyclic groups

If d divides n, then $\langle d\rangle \leq \mathbb{Z}_{n}$ has order n / d. Moreover, all cyclic subgroups have this form.

Corollary

The subgroups of \mathbb{Z}_{n} are of the form $\langle d\rangle$ for every divisor d of n.

The order can be read off from the divisor lattice of 24 .

Cosets

Definition

Let $H \leq G$. Given $x \in G$, its left coset $x H$ and right coset $H x$ are:

$$
x H=\{x h \mid h \in H\}, \quad H x=\{h x \mid h \in H\} .
$$

Lagrange's theorem

Remark

For any $H \leq G$, the left cosets of H partition G into subsets of equal size (exercise).
The right cosets also partition G into subsets of equal size, but they may be different.

Let's compare these partitions for $H=\langle f\rangle$ in $G=D_{4}$.

H	$r^{2} H$	$r H$	$r^{3} H$
f	$r^{2} f$	$r f$	r^{3}
1	r^{2}	r	$r^{3} f$

Definition

The index of $H \leq G$, written [$G: H$], is the number of distinct left (or equivalently, right) cosets of H in G.

Lagrange's theorem

If H is a subgroup of finite group G, then $|G|=[G: H] \cdot|H|$.

The tower law

Proposition

Let G be a finite group and $K \leq H \leq G$ be a chain of subgroups. Then

$$
[G: K]=[G: H][H: K] .
$$

Here is a "proof by picture":

$$
\begin{aligned}
& {[G: H]=\# \text { of cosets of } H \text { in } G} \\
& {[H: K]=\# \text { of cosets of } K \text { in } H} \\
& {[G: K]=\# \text { of cosets of } K \text { in } G}
\end{aligned}
$$

$z H$	$z_{1} \mathrm{~K}$	$z_{2} K$	$z_{3} \mathrm{~K}$	\cdots	$z_{n} K$
	:	:	:	.	:
$a \mathrm{H}$	$a_{1} \mathrm{~K}$	$a_{2} K$	$\mathrm{a}_{3} \mathrm{~K}$	\ldots	$a_{n} K$
H	K	$h_{2} \mathrm{~K}$	$h_{3} \mathrm{~K}$	\ldots	$h_{n} \mathrm{~K}$

Proof

By Lagrange's theorem,

$$
[G: H][H: K]=\frac{|G|}{|H|} \cdot \frac{|H|}{|K|}=\frac{|G|}{|K|}=[G: K] .
$$

The tower law

Another way to visualize the tower law involves subgroup lattices.
It is often helpful to label the edge from H to K in a subgroup lattice with the index $[H: K]$.

$\langle 1\rangle$

The tower law and subgroup lattices

For any two subgroups $K \leq H$ of G, the index of K in H is just the products of the edge labels of any path from H to K.

Equality of sets vs. equality of elements

Caveat!

An equality of cosets $x H=H x$ as sets does not imply an equality of elements $x h=h x$.

Proposition

If $[G: H]=2$, then both left cosets of H are also right cosets.

The center of a group

Definition

The center of G is the set

$$
Z(G)=\{z \in G \mid g z=z g, \quad \forall g \in G\}
$$

If $z \in Z(G)$, we say that z is central in G.

Examples

Let's think about what elements commute with everything in the following groups:

- $Z\left(D_{4}\right)=\left\langle r^{2}\right\rangle=\left\{1, r^{2}\right\}$

■ $Z\left(\mathrm{Frz}_{1}\right)=\langle v\rangle=\{1, v\}$

- $Z\left(D_{3}\right)=\{1\}$
- $Z\left(S_{4}\right)=\{e\}$
- $Z\left(Q_{8}\right)=\langle-1\rangle=\{1,-1\}$
- $Z\left(A_{4}\right)=\{e\}$

Clearly, if $H \leq Z(G)$, then $x H=H x$ for all $x \in G$.

Proposition (exercise)

For any group G, the center $Z(G)$ is a subgroup.

Normal subgroups and normalizers

Given a subgroup H of G, it is natural to ask the following question:
How many left cosets of H are right cosets?

Partition of G by the left cosets of H

Partition of G by the right cosets of H

Definition

A subgroup H is normal if $g H=H g$ for all $g \in G$. We write $H \unlhd G$.
The normalizer of H, denoted $N_{G}(H)$, is the set of elements $g \in G$ such that $g H=H g$:

$$
N_{G}(H)=\{g \in G \mid g H=H g\},
$$

i.e., the union of left cosets that are also right cosets.

Proposition (exercise)

For any $H \leq G$,

$$
H \unlhd N_{G}(H) \leq G .
$$

How to spot the normalizer in a Cayley graph
If we "collapse" G by the left cosets of H and disallow H-arrows, then $N_{G}(H)$ consists of the cosets that are reachable from H by a unique path.

Remark

The normalizer of the subgroup $H=\langle f\rangle$ of D_{n} is

$$
N_{D_{n}}(H)= \begin{cases}H \cup r^{n / 2} H=\left\{1, f, r^{n / 2}, r^{n / 2} f\right\} & n \text { even } \\ H=\{1, f\} & n \text { odd } .\end{cases}
$$

Conjugate subgroups

Definition

For a fixed $g \in G$, the (left) conjugate of H by g is

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}
$$

The set of all subgroups conjugate to H is its conjugacy class, denoted

$$
\mathrm{cl}_{G}(H)=\left\{g \mathrm{Hg}^{-1} \mid g \in G\right\} .
$$

Proposition (exercise)

1. $g \mathrm{Hg}^{-1}$ is a subgroup of G;
2. conjugation is an equivalence relation on the set of subgroups of G.

Useful remark

The following conditions are all equivalent to a subgroup $H \leq G$ being normal:
(i) $g H=H g$ for all $g \in G$; ("left cosets are right cosets");
(ii) $g \mathrm{Hg}^{-1}=H$ for all $g \in G$; ("only one conjugate subgroup")
(iii) $\mathrm{ghg}^{-1} \in H$ for all $g \in G$; ("closed under conjugation").

The alternating group A_{4}

Observations

- A subgroup is normal if its conjugacy class has size 1.
- The size of a conjugacy class tells us how close to being normal a subgroup is.
- Remember these subgroups:

$$
\left|\mathrm{cl}_{A_{4}}(N)\right|=1=\frac{1}{\operatorname{Deg}_{A_{4}}^{\triangleleft}(N)}, \quad\left|\mathrm{cl}_{A_{4}}(H)\right|=4=\frac{1}{\operatorname{Deg}_{A_{4}}^{\triangleleft}(H)}, \quad\left|\mathrm{cl}_{A_{4}}(K)\right|=3=\frac{1}{\operatorname{Deg}_{A_{4}}^{\triangleleft}(K)}
$$

Three subgroups of A_{4}

The normalizer of each subgroup consists of the elements in the blue left cosets.
Here, take $a=(123), x=(12)(34), \quad z=(13)(24)$, and $b=(234)$.

$(14)(23)$	(142)	(143)
$(13)(24)$	(243)	(124)
$(12)(34)$	(134)	(234)
e	(123)	(132)

$\left[A_{4}: N_{A_{4}}(H)\right]=4$
"normal"
"fully unnormal"

(124)	(234)	(143)	(132)		
(123)	(243)	(142)	(134)		
e	$(12)(34)$	$(13)(24)$	$(14)(23)$		$\left[A_{4}: N_{A_{4}}(K)\right]=3$
:---:	${ }^{\text {"moderately unnormal" }}$				

The degree of normality

Let $H \leq G$ have index $[G: H]=n<\infty$. Let's define a term that describes:
"the proportion of cosets that are blue"

Definition

Let $H \leq G$ with $[G: H]=n<\infty$. The degree of normality of H is

$$
\operatorname{Deg}_{G}^{\triangleleft}(H):=\frac{\left|N_{G}(H)\right|}{|G|}=\frac{1}{\left[G: N_{G}(H)\right]}=\frac{\text { \# elements } x \in G \text { for which } x H=H x}{\text { \# elements } x \in G} .
$$

- If $\operatorname{Deg}_{G}^{\triangleleft}(H)=1$, then H is normal.
- If $\operatorname{Deg}_{G}^{\unlhd}(H)=\frac{1}{n}$, we'll say H is fully unnormal.
- If $\frac{1}{n}<\operatorname{Deg}_{G}^{\triangleleft}(H)<1$, we'll say H is moderately unnormal.

Big idea

The degree of normality measures how close to being normal a subgroup is.

A special case of the orbit-stabilizer theorem

Theorem

Let $H \leq G$ with $[G: H]=n<\infty$. Then

$$
\left|c l_{G}(H)\right|=\frac{1}{\operatorname{Deg}_{G}^{\triangleleft}(H)}=\left[G: N_{G}(H)\right]=\frac{\text { \# elements } x \in G \text { for which } x H=H x}{\# \text { elements } x \in G} .
$$

That is, H has exactly $\left[G: N_{G}(H)\right]$ conjugate subgroups.

"Reducing" subgroup lattices

Sometimes it is convenient to collapse conjugacy classes into single nodes in the lattice.
We'll call this the conjugacy poset (it need not be a lattice!). Sometimes it reveals patterns in new ways.

The left-subscript denotes the size.

Conjugating normal subgroups

Proposition

If $H \leq N \unlhd G$, then $x H x^{-1} \leq N$ for all $x \in G$.

Proof

Conjugating $H \leq N$ by $x \in G$ yields $x H x^{-1} \leq x N x^{-1}=N$.

Determining the conjugacy classes by inspection

Suppose we conjugate $G=D_{4}$ by some element $x \in D_{4}$.

Remarks:

■ Subgroups at a unique "lattice neighborhood," called unicorns, must be normal.

- all index-2 subgroups are normal.
- order-2 subgroups are normal iff they're central. (Why?)
- each nonnormal order-2 subgroup $\left\langle r^{i} f\right\rangle$ has a:
- size-2 conjugacy class. (Why?)
- index-2 normalizer, $N_{D_{4}}\left(\left\langle r^{i} f\right\rangle\right)=\left\langle r^{i}, f\right\rangle$.

Unicorns in the diquaternion group

Our definition of unicorn could be strengthened, but we want to keep things simple.
Are any of the C_{4} subgroups of DQ_{8} unicorns, i.e., "not like the others"?

What can we say about conjugacy classes of the subgroups of DQ_{8} just from the lattice?

A mystery group of order 16

Let's repeat a previous exercise, for this lattice of an actual group. Unicorns are purple.

Every subgroup is normal, except possibly $\langle s\rangle$ and $\left\langle r^{4} s\right\rangle$. (Why?)
There are two cases:

- $\langle s\rangle$ and $\left\langle r^{4} s\right\rangle$ are normal $\Rightarrow s \in Z(G) \Rightarrow G$ is abelian.
- $\langle s\rangle$ and $\left\langle r^{4} s\right\rangle$ are not normal $\Rightarrow c l_{G}(\langle s\rangle)=\left\{\langle s\rangle,\left\langle r^{4} s\right\rangle\right\} \Rightarrow G$ is nonabelian.

This doesn't necessarily mean that both of these are actually possible. . .

A mystery group of order 16
It's straightforward to check that this is the subgroup lattice of

$$
C_{8} \times C_{2}=\left\langle r, s \mid r^{8}=s^{2}=1, s r s=r\right\rangle .
$$

Let $r=(a, 1)$ and $s=(1, b)$, and so $C_{8} \times C_{2}=\langle r, s\rangle=\langle(a, 1),(1, b)\rangle$.

A mystery group of order 16

However, the nonabelian case is possible as well! The following also works:

$$
\mathrm{SA}_{8}=\left\langle r, s \mid r^{8}=s^{2}=1, s r s=r^{5}\right\rangle
$$

More on conjugate subgroups

Proposition (exercise)

If $\mathrm{aH}=\mathrm{bH}$, then $\mathrm{Ha}^{-1}=\mathrm{Hb}^{-1}$, and hence $a \mathrm{Ha}^{-1}=b \mathrm{Hb}^{-1}$.

Proposition (HW)

For any $H \leq G$, the intersection of all conjugates is normal: $N:=\bigcap_{x \in G} x H x^{-1} \unlhd G$.

There might be nonnormal intermedate subgroups here

This subgroup must be normal

The subgroup lattice of the simple group A_{5}

Conjugate subgroups, visually
Consider the subgroups $A=\langle a\rangle$ and $B=\langle b\rangle$ of $G=C_{4} \rtimes C_{4}$.

$$
a B a^{-1}
$$

Conjugate elements

Definition

The conjugacy class of an element $h \in G$ is the set

$$
\mathrm{cl}_{G}(h)=\left\{x h x^{-1} \mid x \in G\right\} .
$$

Proposition ("class equation")

For any finite group G,

$$
|G|=|Z(G)|+\sum\left|\mathrm{cl}_{G}\left(h_{i}\right)\right|,
$$

where the sum is taken over distinct conjugacy classes of size greater than 1.

Proof (sketch)

Immediate upon showing that:

- $\left|\mathrm{cl}_{G}(h)\right|=1$ iff $h \in Z(G)$;
- conjugacy of elements is an equivalence relation.

Proposition (exercise)

Every normal subgroup is the union of conjugacy classes.

Conjugate elements

Often, we can determine the conjugacy classes by inspection.

Let's look at Q_{8}, all of whose subgroups are normal.

- Since $i \notin Z\left(Q_{8}\right)=\{ \pm 1\}$, we know $\left|c l_{Q_{8}}(i)\right|>1$.
- Also, $\langle i\rangle=\{ \pm 1, \pm i\}$ is a union of conjugacy classes.
- Therefore $\operatorname{cl}_{Q_{8}}(i)=\{ \pm i\}$.

Similarly, $\mathrm{cl}_{Q_{8}}(j)=\{ \pm j\}$ and $\mathrm{cl}_{Q_{8}}(k)=\{ \pm k\}$.

1	i	j	k
-1	$-i$	$-j$	$-k$

$\langle 1\rangle$

"Conjugation preserves structure"

Revisiting frieze groups, let $h=h_{0}$ denote the reflection across the central axis, ℓ_{0}.
Suppose we want to reflect across a different axis, say ℓ_{-2}.

It should be clear that all reflections (resp., rotations) of the "same parity" are conjugate.

Conjugacy classes in D_{n}

The dihedral group D_{n} is a "finite version" of the previous frieze group.
When n is even, there are two "types of reflections" of an n-gon:

1. $r^{2 k} f$ is across an axis that bisects two sides
2. $r^{2 k+1} f$ is across an axis that goes through two corners.

Here is a visual reason why each of these two types form a conjugacy class in D_{n}.

What do you think the conjugacy classes of a reflection is in D_{n} when n is odd?

Centralizers

Definition

The centralizer of $h \subseteq G$ is the set of elements that commute with h

$$
C_{G}(h)=\{x \in G \mid x h=h x\} \leq G .
$$

Exercise: (i) $C_{G}(h)$ contains at least $\langle h\rangle$, (ii) if $x h=h x$, then $x\langle h\rangle \subseteq C_{G}(h)$.

Definition

Let $h \in G$ with $[G:\langle h\rangle]=n<\infty$. The degree of centrality of h is

$$
\operatorname{Deg}_{G}^{C}(h):=\frac{\left|C_{G}(h)\right|}{|G|}=\frac{1}{\left[G: C_{G}(h)\right]}=\frac{\text { \# elements } x \in G \text { for which } x h=h x}{\text { \# elements } x \in G} .
$$

- If $\operatorname{Deg}_{G}^{C}(h)=1$, then h is central.
- If $\operatorname{Deg}_{G}^{C}(h)=\frac{1}{n}$, we'll say h is fully uncentral.
- If $\frac{1}{n}<\operatorname{Deg}_{G}^{C}(h)<1$, we'll say h is moderately uncentral.

Big idea

The degree of centrality measures how close to being central an element is.

The number of conjugate elements

The following result is analogous to an earlier one on the degree of normality and $\left|\mathrm{cl}_{G}(H)\right|$.

Theorem

Let $h \in G$ with $[G:\langle h\rangle]=n<\infty$. Then

$$
\left|c l_{G}(h)\right|=\frac{1}{\operatorname{Deg}_{G}^{C}(h)}=\left[G: C_{G}(h)\right]=\frac{\text { \# elements } x \in G \text { for which } x h=h x}{\# \text { elements } x \in G} .
$$

That is, there are exactly [$G: C_{G}(h)$] elements conjugate to h.
Both of these are special cases of the orbit-stabilizer theorem, about group actions.

An example: conjugacy classes and centralizers in Dic ${ }_{6}$

$r s$	$r^{3} s$	$r^{5} s$
s	$r^{2} s$	$r^{4} s$
r^{3}	r^{2}	r^{4}
1	r	r^{5}

conjugacy classes

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$$
\begin{gathered}
{\left[G: C_{G}\left(r^{3}\right)\right]} \\
\text { "central" }
\end{gathered}=1
$$

$r s$	$r^{3} s$	$r^{5} s$
s	$r^{2} s$	$r^{4} s$
r	r^{3}	r^{5}
1	r^{2}	r^{4}

$$
\left[G: C_{G}\left(r^{2}\right)\right]=2
$$

"moderately uncentral"

r^{2}	$r^{2} s$	r^{5}	$r^{5} s$
r	$r s$	r^{4}	$r^{4} s$
1	s	r^{3}	$r^{3} s$

$\left[G: C_{G}(s)\right]=3$
"fully unncentral"

Conjugacy classes in D_{6}

Let's find the conjugacy classes of D_{6} by inspection. The centralizers are:

- $C_{D_{6}}(1)=C_{D_{6}}\left(r^{3}\right)=D_{6}, \quad($ order 12; index 1)
- $C_{D_{6}}\left(r^{i}\right)=\langle r\rangle$, for $i=2,3,4,5$, (order 6; index 2)
- $C_{D_{6}}\left(r^{i} f\right)=\left\langle r^{3}, r^{i} f\right\rangle=\left\{1, r^{3}, r^{i} f, r^{3+i} f\right\}, \quad($ order 4 ; index 3).

This is enough information to determine the conjugacy classes!

The subgroup lattice of D_{6}
We now can deduce the conjugacy classes of the subgroups of D_{6}.

The conjugacy poset of D_{6}

Conjugacy classes in D_{5}

Since $n=5$ is odd, all reflections in D_{5} are conjugate.

Centralizers

- $C_{D_{5}}(1)=D_{5} \quad($ index 1$)$,
- $C_{D_{5}}\left(r^{i}\right)=\langle r\rangle$ (index 2),

- $C_{D_{5}}\left(r^{i} f\right)=\left\langle r^{2} f\right\rangle$ (index 5).

Cycle type and conjugacy in the symmetric group

We introduced cycle type in back in Chapter 2.
This is best seen by example. There are five cycle types in S_{4} :

example element	e	(12)	(234)	(1234)	$(12)(34)$
parity	even	odd	even	odd	even
\# elts	1	6	8	6	3

Definition

Two elements in S_{n} have the same cycle type if when written as a product of disjoint cycles, there are the same number of length- k cycles for each k.

Theorem

Two elements $g, h \in S_{n}$ are conjugate if and only if they have the same cycle type.
For example, permutations in S_{5} fall into seven cycle types (conjugacy classes):

$$
\quad \operatorname{cl}(e), \quad \operatorname{cl}((12)), \quad \quad \operatorname{cl}((123)), \quad \quad \operatorname{cl}((1234)), \quad \quad \operatorname{cl}((12345)), \quad \quad c l((12)(34)), \quad \quad \operatorname{cl}((12)(345)) .
$$

Big idea

Conjugate permutations have the same structure - they are the same up to renumbering.

Conjugation preserves structure in the symmetric group

The symmetric group $G=S_{6}$ is generated by any transposistion and any n-cycle.
Consider the permutations of seating assignments around a circular table achievable by

- (23): "people in chairs 2 and 3 may swap seats"
- (123456): "people may cyclically rotate seats counterclockwise"

Here's how to get people in chairs 1 and 2 to swap seats:

The subgroup lattice of S_{4}

Exercise

Partition the subgroup lattice of S_{4} into conjugacy classes by inspection alone.

The conjugacy poset of S_{4}

Conjugacy class size

Theorem (number of conjugate subgroups)

The conjugacy class of $H \leq G$ contains exactly $\left[G: N_{G}(H)\right]$ subgroups.

Proof (roadmap)

Construct a bijection between left cosets of $N_{G}(H)$ and conjugate subgroups of H :

$$
\text { " } x H x^{-1}=y H y^{-1} \text { iff } x \text { and } y \text { are in the same left coset of } N_{G}(H) . "
$$

Define $\phi:\left\{\right.$ left cosets of $\left.N_{G}(H)\right\} \longrightarrow\{$ conjugates of $H\}, \quad \phi: x N_{G}(H) \longmapsto x H x^{-1}$.

Theorem (number of conjugate elements)

The conjugacy class of $h \in G$ contains exactly [$G: C_{G}(h)$] elements.

Proof (roadmap)

Construct a bijection between left cosets of $C_{G}(h)$, and elements in $\mathrm{cl}_{G}(h)$:

$$
\text { "xhx } x^{-1}=y h y^{-1} \text { iff } x \text { and } y \text { are in the same left coset of } C_{G}(h) . "
$$

Define $\phi:\left\{\right.$ left cosets of $\left.C_{G}(h)\right\} \longrightarrow\{$ conjugates of $h\}, \quad \phi: x C_{G}(h) \longmapsto x h x^{-1}$.

Quotients

Denote the set of left cosets of H in G by

$$
G / H:=\{x H \mid x \in G\} .
$$

Key idea

The quotient of G by a subgroup H exists when the (left) cosets of H form a group.
This is well-defined precisely when H is normal.

Cluster the left cosets of N

Collapse cosets into single nodes

	N	$i N$	$j N$	$k N$
N	N	$i N$	$j N$	$k N$
$i N$	$i N$	N	$k N$	$j N$
$j N$	$j N$	$k N$	N	$i N$
$k N$	$k N$	$j N$	$i N$	N

Elements of the quotient are cosets of N

Quotients

Cluster the left cosets of $H \leq \mathbb{Z}_{6}$

Cluster the
left cosets of $N \leq D_{3}$

Collapse cosets into single nodes

Collapse cosets into single nodes

Elements of the quotient are cosets of H

Elements of the quotient are cosets of N

We say that $\mathbb{Z}_{6} /\langle 2\rangle \cong \mathbb{Z}_{2}$ and $D_{3} /\langle r\rangle \cong C_{2}$.

Quotients

Let's revisit $N=\langle(12)(34),(13)(24)\rangle$ and $H=\langle(123)\rangle$ of A_{4} :

When do the cosets of H form a group?

In the following: the right coset Hg consists of the nodes at the "arrowtips".

Elements in the right coset Hg are in multiple left cosets

not a valid Cayley graph

Elements in Hg all stay in gH

Key idea

If H is normal subgroup of G, then the quotient group G / H exists.

If H is not normal, then following the blue arrows from H is ambiguous.
In other words, it depends on our where we start within H.

What does it mean to "multiply" two cosets?

Proposition

If $H \unlhd G$, the set of left cosets G / H forms a group, with binary operation

$$
a H \cdot b H:=a b H .
$$

It's clear that G / H is closed under this operation, we just have to show that the operation is well-defined.

By that, we mean that it does not depend on our choice of coset representative:

$$
\text { if } a_{1} H=a_{2} H \text { and } b_{1} H=b_{2} H \text {, then } a_{1} H \cdot b_{1} H=a_{2} H \cdot b_{2} H \text {. }
$$

Quotient groups, algebraically

Lemma

When $H \unlhd G$, the set of cosets G / H forms a group.

Proof

To show the binary operation is, suppose $a_{1} H=a_{2} H$ and $b_{1} H=b_{2} H$. Then

$$
\begin{aligned}
a_{1} H \cdot b_{1} H & =a_{1} b_{1} H & & \text { (by definition) } \\
& =a_{1}\left(b_{2} H\right) & & \left(b_{1} H=b_{2} H\right. \text { by assumption) } \\
& =\left(a_{1} H\right) b_{2} & & \left(b_{2} H=H b_{2} \text { since } H \unlhd G\right) \\
& =\left(a_{2} H\right) b_{2} & & \left(a_{1} H=a_{2} H\right. \text { by assumption) } \\
& =a_{2} b_{2} H & & \left(b_{2} H=H b_{2} \text { since } H \unlhd G\right) \\
& =a_{2} H \cdot b_{2} H & & \text { (by definition) }
\end{aligned}
$$

Thus, the binary operation on G / H is well-defined.
We'll leave checking the group axioms as an exercise.

