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Homomorphisms

Definition
A homomorphism is a function φ : G → H between two groups satisfying

φ(ab) = φ(a)φ(b), for all a, b ∈ G .

An isomorphism is a bijective homomorphism.

The Greek roots “homo” and “morph” together mean “same shape.”

The homormorphism φ : G → H is an

embedding if φ is one-to-one: “G is a subgroup of H.”

quotient map if φ is onto: “H is a quotient of G.”

We’ll see that even if φ is neither, it can be decomposed as a composition φ = π ◦ ι of an
embedding with a quotient.

We will use standard function terminology:

the group G is the domain

the group H is the codomain

the image is what is often called the range:

Im(φ) = φ(G) =
{
φ(g) | g ∈ G

}
.
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Embeddings vs. quotients: A preview

The difference between embeddings and quotient maps can be seen in the subgroup lattice:

Dic10

C10

C4 C4 C4 C4 C4

C2

C5

C1

AGL1(Z5)

D5

C5
C4 C4 C4 C4 C4

C2 C2 C2 C2 C2

C1

In one of these groups, D5 is subgroup. In the other, it arises as a quotient.

This, and much more, will be consequences of the celebrated isomorphism theorems.
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Homomorphisms

The condition φ(ab) = φ(a)φ(b) means that the map φ preserves the structure of G .

It has visual interpretations on the level of Cayley graphs and Cayley tables.

Cayley
tables

Cayley
graphs

ab = c

Domain
a

c

b

a

b

c

Codomain
φ(a)

φ(c)

φ(b)
φ

φ

φ(a)φ(b)=φ(c)

φ(a)

φ(b)

φ(c)

Note that in the Cayley graphs, b and φ(b) are paths; they need not just be edges.
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Two basic properties of homomorphisms

Proposition
Let φ : G → H be a homomorphism. Denote the identity of G and H by 1G and 1H .

(i) φ(1G ) = 1H “φ sends the identity to the identity”

(ii) φ(g−1) = φ(g)−1 “φ sends inverses to inverses”

Proof
(i) Pick any g ∈ G . Now, φ(g) ∈ H; observe that

φ(1G )φ(g) = φ(1G · g) = φ(g) = 1H · φ(g) .

Therefore, φ(1G ) = 1H . X

(ii) Take any g ∈ G . Observe that

φ(g)φ(g−1) = φ(gg−1) = φ(1G ) = 1H .

Since φ(g)φ(g−1) = 1H , it follows immediately that φ(g−1) = φ(g)−1. X
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An embedding and an isomorphisms
Consider the homomorphism θ : Z3 → C6, defined by θ(n) = r2n:

0

1

2 1

rr2

r3

r4 r5

〈0〉

Z3

C6

〈r2〉
〈r3〉

〈1〉

The following is an isomorphism:

φ : D3 −→ S3, φ(r) = (123), φ(f ) = (23).

1

r

r2

f

r2f

rf

D3

e

(23)

(123)

(13)

(132)

(12)

S3 1
2 3

f 7→ (23)
(13)(12)

r 7→ (123)

M. Macauley (Clemson) Chapter 4: Maps between groups Math 8510, Abstract Algebra 6 / 81

mailto:macaule@clemson.edu


An example that is neither an embedding nor quotient
Consider the homomorphism φ : Q8 → A4 defined by

φ(i) = (12)(34), φ(j) = (13)(24).

Using the property of homomorphisms,

φ(k) = φ(ij) = φ(i)φ(j) = (12)(34)(13)(24) = (14)(23),

φ(−1) = φ(i2) = φ(i)2 =
(
(12)(34)

)2
= e,

and φ(−g) = φ(g) for g = i , j , k.

1 i

kj

−1 −i

−k−j

G = Q8
φ

H = A4

e x

z y

a c

d b

d2

b2a2

c2

Im(φ)
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Group representations

We’ve already seen how to represent groups as collections of matrices.

Formally, a (faithful) representation of a group G is a (one-to-one) homomorphism

φ : G −→ GLn(K)

for some field K (e.g., R, C, Zp, etc.)

For example, the following 8 matrices form group under multiplication, isomorphic to Q8.{
±I , ±

[0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, ±

[0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, ±

[0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]}
.

Formally, we have an embedding φ : Q8 → GL4(R) where

φ(i) =

[0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

Notice how we can use the homomorphism property to find the image of the other
elements.
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Kernels and quotient maps

Definition
Let φ : G → H be a homomorphism. The preimage of h ∈ Im(φ) is

φ−1(h) :=
{
g ∈ G | φ(g) = h

}
.

Definition
The kernel of a homomorphism φ : G → H is the set

Ker(φ) := φ−1(1H) =
{
k ∈ G | φ(k) = 1H

}
.

Exercise
The kernel of any homomorphism φ : G → H is normal. �

Proposition

Let φ : G → H be a homomorphism. Then each preimage φ−1(h) is a coset of Ker(φ).

Proof (sketch)

Let N = Ker(φ) and take any g ∈ φ−1(h). (This means φ(g) = h.)

Establish φ−1(h) = gN by verifying both ⊆ and ⊇. �
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The fundamental homomorphism theorem

Theorem (FHT)

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

Let’s see this by example:

φ : Q8 −→ V4, φ(i) = v , φ(j) = h.

φ(1) = e

φ(−1) = φ(i2) = φ(i)2 = v2 = e

φ(k) = φ(ij) = φ(i)φ(j) = vh = r

φ(−k) = φ(ji) = φ(j)φ(i) = hv = r

φ(−i) = φ(−1)φ(i) = ev = v

φ(−j) = φ(−1)φ(j) = eh = h

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

Q8
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Visualizing the FHT via Cayley graphs

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

Q8
φ

“quotient map” π

φ = ι ◦ π

N iN

jN kN

Q8/N

ι “relabeling map”

e v

h r

V4
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Visualizing the FHT via Cayley tables

Here’s another way to think about the homomorphism

φ : Q8 −→ V4, φ(i) = v , φ(j) = h

as the composition of:

a quotient by N = Ker(φ) = 〈−1〉 = {±1},

a relabeling map ι : Q8/N → V4.

1

−1

i

−i

j

−j

k

−k

1 −1 i −i j −j k −k

1

−1

i

−i

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

k

−k

−j

j

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

1

−1

i

−i

k

−k

−j

j

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

N iN jN kN

iN N kN jN

jN kN N iN

kN jN iN N

ι

1

−1

i

−i

j

−j

k

−k

1 −1 i −i j −j k −k

1

−1

i

−i

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

k

−k

−j

j

j

−j

k

−k

−1

1

−i

i

−j

j

−k

k

1

−1

i

−i

k

−k

−j

j

i

−i

−1

1

−k

k

j

−j

−i

i

1

−1

e v h r

v e r h

h r e v

r h v e
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Proof of the FHT

Fundamental homomorphism theorem
If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

Proof
Let N = Ker(φ), and define

ι : G/N −→ Im(φ) , ι : gN 7−→ φ(g) .

• Show ι is well-defined. We must show that if aN = bN, then ι(aN) = ι(bN):

aN = bN =⇒ b−1aN = N =⇒ b−1a ∈ N .

By definition of b−1a ∈ Ker(φ),

1H = φ(b−1a) = φ(b−1)φ(a) = φ(b)−1 φ(a) =⇒ φ(a) = φ(b) .

By definition of ι: ι(aN) = φ(a) = φ(b) = ι(bN). X

• Show ι is a homomorphism. ι(aN · bN) = ι(abN) (aN · bN := abN)
= φ(ab) (definition of ι)
= φ(a)φ(b) (φ is a homom.)
= ι(aN) ι(bN) (definition of ι) X
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Proof of FHT (cont.) [Recall: ι : G/N → Im(φ) , ι : gN 7→ φ(g)]

Proof (cont.)

• Show ι is injective (1–1) : We must show that ι(aN) = ι(bN) implies aN = bN.

ι(aN) = ι(bN) =⇒ φ(a) = φ(b) (by definition)
=⇒ φ(b)−1 φ(a) = 1H
=⇒ φ(b−1a) = 1H (φ is a homom.)
=⇒ b−1a ∈ N (definition of Ker(φ))
=⇒ b−1aN = N (aH = H ⇔ a ∈ H)
=⇒ aN = bN X

• Show ι is surjective (onto) .

Pick any φ(a) ∈ Im(φ). By defintion, ι(aN) = φ(a). X

Useful technique
Suppose we want to show that G/N ∼= H. There are two approaches:

(i) Define φ : G/N → H and prove it’s a well-defined, bijective, homomorphism.

(ii) Define φ : G → H and prove that it’s a surjective homomorphism, and Ker φ = N.
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Consequences of the FHT

Let’s find all homomorphisms φ : Z44 → Z16.

By the FHT,
Z44/Ker(φ) ∼= Im(φ) ≤ Z16.

This means that 44/|Ker(φ)| must be 1, 2, 4, 8, or 16.

Also, |Ker(φ)| must divide 44. We are left with three cases: |Ker(φ)| = 44, 22, or 11.

Reminder
For each d | n, the group Zn has a unique subgroup of order d , which is 〈n/d〉.

Case 1: |Ker(φ)| = 44, which forces | Im(φ)| = 1, and so φ(1) = 0 is the trivial
homomorphism.

Case 2: |Ker(φ)| = 22. By the FHT, | Im(φ)| = 2, which means Im(φ) = {0, 8}, and
so φ(1) = 8.

Case 3: |Ker(φ)| = 11. By the FHT, | Im(φ)| = 4, which means Im(φ) = {0, 4, 8, 12}.

There are two subcases: φ(1) = 4 or φ(1) = 12.
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What does “well-defined” really mean?

Recall that we’ve seen the term “well-defined” arise in different contexts:

a well-defined binary operation on a set G/N of cosets,

a well-defined function ι : G/N → H from a set (group) of cosets.

In both of these cases, well-defined means that:

our definition doesn’t depend on our choice of coset representative.

Formally:

If N E G , then aN · bN := abN is a well-defined binary operation on the set G/N of
cosets, because

if a1N = a2N and b1N = b2N, then a1b1N = a2b2N.

The map ι : G/N → H, where ι(aN) = φ(a), is a well-defined homomorphism,
meaning that

if aN = bN, then ι(aN) = ι(bN) (that is, φ(a) = φ(b)) holds.

Remark
Whenever we define a map and the domain is a quotient, we must show it’s well-defined.
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A picture of the isomorphism ι : Z/〈12〉 −→ Z12

· · · −3 −2 −1 0 1 2 3 · · ·

Z
φ = ι ◦ π

π

0

1

2
3

4

5

6

7

8
9

10

11

Z12

...
−16

−15
−14

−13

−12

−11

−10
−9

−8

−7

−6

−5

−4
−3

−2

−1

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

...

Z/〈12〉

ι
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The Isomorphism Theorems

The Fundamental homomorphism theorem (FHT) is the first of four basic theorems about
homomorphisms and their structure.

These are commonly called “The Isomorphism Theorems.”

Fundamental homomorphism theorem: “All homomorphic images are quotients”

Correspondence theorem: Characterizes “subgroups of quotients”

Fraction theorem: Characterizes “quotients of quotients”

Diamond theorem: Characterizes “quotients of a products by a factor”

These all have analogues for other algebraic structures, e.g., rings, vector spaces, modules,
Lie algebras.

All of these theorems can look messy and unmotivated algebraically.

However, they all have beautiful visual interpretations, especially involving subgroup lattices.
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The correspondence theorem: subgroups of quotients

Given N E G , the quotient G/N has a group structure, via aN · bN = abN.

Moreover, by the FHT theorem, every homomorphism image is a quotient.

Natural question
What are the subgroups of a quotient?

Fortunately, this has a simple answer that is easy to remember.

Correspondence theorem (informal)

The subgroups of the quotient G/N are quotients of the subgroups H ≤ G that contain N.

Moreover, “most properties” of H/N ≤ G/N are inherited from H ≤ G .

This is best understood by interpreting the subgroup lattices of G and G/N.

Let’s do some examples for intuition, and then state the correspondence theorem formally.
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The correspondence theorem: subgroups of quotients
Compare G = Dic6 with the quotient by N = 〈r3〉.

G/N

s r3s

r2s r5s

rs r4s

1 r3

r2 r5

r r4

G = Dic6

1

rr2

r3

r4 r5

s

rsr2s

r3s

r4s r5s

We know the subgroups structure of G/N =
{
N, rN, r2N, sN, rsN, r2sN

} ∼= D3.

“The subgroups of the quotient G/N are the quotients of the subgroups that contain N.”

“shoes out of the box”

N sN

rN rsN

r2N r2sN

〈rN〉 ≤ G/N

“shoeboxes; lids off”

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈r〉/N ≤ G/N

“shoeboxes; lids on”

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈r〉 ≤ G
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The correspondence theorem: subgroups of quotients
Here is the subgroup lattice of G = Dic6, and of the quotient G/N, where N = 〈r3〉.

〈r , s〉

〈r〉

〈r3〉

〈r2〉

〈s〉 〈rs〉 〈r2s〉

〈1〉

〈rN, sN〉

〈rN〉

〈N〉

〈sN〉 〈rsN〉 〈r2sN〉

〈r , s〉/〈r3〉

〈r〉/〈r3〉

〈r3〉/〈r3〉

〈s〉/〈r3〉 〈rs〉/〈r3〉 〈r2s〉/〈r3〉

“The subgroups of the quotient G/N are the quotients of the subgroups that contain N.”

“shoeboxes; lids on”

N sN

rN rsN

r2N r2sN

〈sN〉 ≤ G/N

“shoeboxes; lids off”

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈s〉/N ≤ G/N

“shoes out of the box”

1 r3 s r3s

r r4 rs r4s

r2 r5 r2s r5s

〈s〉 ≤ G
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The correspondence theorem: subgroups of quotients

Correspondence theorem (informally)

There is a bijection between subgroups of G/N and subgroups of G that contain N.

“Everything that we want to be true” about the subgroup lattice of G/N is inherited from
the subgroup lattice of G .

Most of these can be summarized as:

“The of the quotient is just the quotient of the ”

Correspondence theorem (formally)
Let N ≤ H ≤ G and N ≤ K ≤ G be chains of subgroups and N E G . Then

1. Subgroups of the quotient G/N are quotients of the subgroup H ≤ G that contain N.

2. H/N E G/N if and only if H E G

3. [G/N : H/N] = [G : H]

4. H/N ∩ K/N = (H ∩ K)/N

5. 〈H/N,K/N〉 = 〈H,K〉/N
6. H/N is conjugate to K/N in G/N if and only if H is conjugate to K in G .
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The correspondence theorem: subgroups of quotients

All parts of the correspondence theorem have nice subgroup lattice interpretations.

We’ve already interpreted the the first part.

Here’s what the next four parts say.

G

H

K

N

1

a

b

c

G/N

H/N

K/N

N/N

a

b

c

G

〈H,K〉

H
K

H ∩ K

N

1

G/N

〈H,K〉/N

H/N
K/N

(H ∩ K)/N

N/N

G/N

〈H/N,K/N〉

H/N
K/N

H/N ∩ K/N

N/N

M. Macauley (Clemson) Chapter 4: Maps between groups Math 8510, Abstract Algebra 23 / 81

mailto:macaule@clemson.edu


The correspondence theorem: subgroups of quotients

The last part says that we can characterize the conjugacy classes of G/N from those of G .

G

H x2Hx−12 · · · xmHx−1m

G/N

H/N x2Hx−12 /N· · ·xmHx−1m /N

Let’s apply that to find the conjugacy classes of C4oC4 by inspection alone.

C4oC4

C4×C2 C4×C2 C4×C2

C4 C4 C4 C4 C4 C4V4

C2 C2 C2

C1

C4oC4

C4×C2 C4×C2 C4×C2

C4 C4 C4 C4 C4 C4V4

C2 C2 C2

C1

C4oC4

C4×C2 C4×C2 C4×C2

C4 C4 C4 C4 C4 C4V4

C2 C2 C2

C1
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The correspondence theorem: subgroups of quotients

Let’s prove the first (main) part of the correspondence theorem.

Correspondence theorem (first part)

The subgroups of the quotient G/N are quotients of the subgroup H ≤ G that contain N.

Proof
Let S be a subgroup of G/N. Then S is a collection of cosets, i.e.,

S =
{
hN | h ∈ H

}
,

for some subset H ⊆ G . We just need to show that H is a subgroup.

We’ll use the one-step subgroup test: take h1N, h2N ∈ S. Then S must also contain

(h1N)(h2N)−1 = (h1N)(h−12 N) = (h1h−12 )N. (1)

That is, h1h−12 ∈ H, which means that H is a subgroup. X

Conversely, suppose that N ≤ H ≤ G . The one-step subgroup test shows that
H/N ≤ G/N; see Eq. (1). �

The other parts are straightforward and will be left as exercises.
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The fraction theorem: quotients of quotients
The correspondence theorem characterizes the subgroup structure of the quotient G/N.

Every subgroup of G/N is of the form H/N, where N ≤ H ≤ G .

Moreover, if H E G , then H/N E G/N. In this case, we can ask:

What is the quotient group (G/N)/(H/N) isomorphic to?

Fraction theorem
Given a chain N ≤ H ≤ G of normal subgroups of G ,

(G/N)/(H/N) ∼= G/H.

SA8=G

〈rs〉〈r2, s〉 〈r〉

〈r4, s〉 〈r2s〉 〈r2〉=H

〈s〉 〈r4s〉 〈r4〉=N

〈1〉

G/N

〈rs〉/N〈r2, s〉/N 〈r〉/N

〈r4, s〉/N 〈r2s〉/N 〈r2〉/N

〈r4〉/N

G/H

〈rs〉/H〈r2, s〉/H 〈r〉/H

〈r2〉/H〈r4, s〉 〈r2s〉

〈s〉 〈r4s〉 〈r4〉

〈1〉
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The fraction theorem: quotients of quotients

Let’s continue our example of the semiabelian group G = SA8 = 〈r , s〉.

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

N ≤ H ≤ G

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

r3N

rN

r3sN

rsN

r2N

N

r2sN

sN

G/N = 〈rN, sN〉 ∼= C4 × C2

H/N = 〈r2N〉 = {N, r2N} ∼= C2

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

rH

H

rsH

sH

G/H = 〈rH, sH〉 ∼= V4

(G/N)/(H/N) ∼= G/H

(G/N)/(H/N)

r3 r7

r r5
rN〈r2N〉

r2 r6

1 r4
〈r2N〉

r3s r7s

rs r5s
rsN〈r2N〉

r2s r6s

s r4s
sN〈r2N〉

G/H

r3 r7

r r5
rH

r2 r6

1 r4
H

r3s r7s

rs r5s
rsH

r2s r6s

s r4s
sH
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The fraction theorem: quotients of quotients

Fraction theorem
Given a chain N ≤ H ≤ G of normal subgroups of G ,

(G/N)/(H/N) ∼= G/H.

Proof
This is tailor-made for the FHT. Define the map

φ : G/N −→ G/H, φ : gN 7−→ gH.

• Show φ is well-defined : Suppose g1N = g2N. Then g1 = g2n for some n ∈ N. But
n ∈ H because N ≤ H. Thus, g1H = g2H, i.e., φ(g1N) = φ(g2N). X

• φ is clearly onto and a homomorphism. X

• Apply the FHT:

Ker(φ) =
{
gN ∈ G/N | φ(gN) = H

}
=

{
gN ∈ G/N | gH = H

}
=

{
gN ∈ G/N | g ∈ H

}
= H/N

By the FHT, (G/N)/Ker(φ) = (G/N)/(H/N) ∼= Im(φ) = G/H. �
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The fraction theorem: quotients of quotients

For another visualization, consider G = Z6 × Z4 and write elements as strings.

Consider the subgroups N = 〈30, 02〉 ∼= V4 and H = 〈30, 01〉 ∼= Z2 × Z4.

Notice that N ≤ H ≤ G , and H = N ∪ (01+N), and

G/N =
{
N, 01+N, 10+N, 11+N, 20+N, 21+N

}
, H/N = {N, 01+N}

G/H =
{
N ∪ (01+N), (10+N) ∪ (11+N), (20+N) ∪ (21+N)

}
(G/N)/(H/N) =

{
{N, 01+N}, {10+N, 11+N}, {20+N, 21+N}

}
.

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

N ≤ H ≤ G

50 52

20 22
20+N

51 53

21 23
21+N

40 42

10 12
10+N

41 43

11 13
11+N

30 32

00 02
N

31 33

01 03
01+N

G/N consists of 6 cosets
H/N = {N, 01+N}

50 52

20 22

51 53

21 23

40 42

10 12

41 43

11 13

30 32

00 02

31 33

01 03

20+H

10+H

H

G/H consists of 3 cosets
(G/N)/(H/N) ∼= G/H

M. Macauley (Clemson) Chapter 4: Maps between groups Math 8510, Abstract Algebra 29 / 81

mailto:macaule@clemson.edu


The diamond theorem: quotients of products by factors

Diamond theorem
Suppose A,B ≤ G , and that A normalizes B. Then

(i) A ∩ B E A and B E AB.

(ii) The following quotient groups are isomorphic:

AB/B ∼= A/(A ∩ B)

G

AB

A B

A∩B

Proof (sketch)
Define the following map

φ : A −→ AB/B , φ : a 7−→ aB .
If we can show:

1. φ is a homomorphism, 2. φ is surjective (onto), 3. Ker(φ) = A ∩ B,

then the result will follow immediately from the FHT. The details are left as HW.

Corollary

Let A,B ≤ G , with one of them normalizing the other. Then |AB| =
|A| · |B|
|A ∩ B|

.
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The diamond theorem: quotients of products by factors

Let G = Z6 × Z2, and consider subgroups A = 〈(0, 1), (3, 0)〉, and B = 〈(2, 0)〉.

Then G = AB, and A ∩ B = 〈(0, 0)〉.

Let’s interpret the diamond theorem AB/B ∼= A/A ∩ B in terms of the subgroup lattice.

Z6 × Z2

〈(2, 1)〉 〈(1, 1)〉 〈(1, 0)〉

〈(0, 1), (3, 0)〉

〈(2, 0)〉

〈(0, 1)〉 〈(3, 1)〉 〈(3, 0)〉

〈(0, 0)〉

The fact that the subgroup lattice of V4 is diamond shaped is coincidental.
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The diamond theorem illustrated by a “pizza diagram”

The following analogy is due to Douglas Hofstadter:

B

A

a2Ba3B

a4B

anB

• 1

•a2•a3

•a4

•an. . .

. . .

. . .

. . .

AB = large pizza

A = small pizza

B = large pizza slice

A ∩ B = small pizza slice

AB/B =
{
large pizza slices

}
A/(A ∩ B) =

{
small pizza slices

}
Diamond theorem: AB/B ∼= A/(A ∩ B)
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The diamond theorem: quotients of products by factors

Proposition
Suppose H is a subgroup of Sn that is not contained in An. Then exactly half of the
permutations in H are even.

Sn

H
An

H ∩ An

2

2

Proof
It suffices to show that [H : H ∩ An] = 2, or equivalently, that H/(H ∩ An) ∼= C2.

Since H � An, the product HAn must be strictly larger, and so HAn = Sn.

By the diamond theorem,

H/(H ∩ An) = HAn/An = Sn/An ∼= C2. �
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A generalization of the FHT

Theorem (exercise)
Every homomorphism φ : G → H can be factored as a quotient and embedding:

G

G/N

H

π

φ

ι

g

gN

φ(g)

π

φ

ι

G=Q8

〈i〉 〈j〉 〈k〉

Ker(φ)=〈−1〉

〈1〉

φ

π
G/N∼=Im(φ)

〈iN〉 〈jN〉 〈kN〉

〈N〉

ι

A4=H

Im(φ)=V4

C3 C3 C3 C3

C2C2C2

C1

φ = ι ◦ π
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A generalization of the FHT

1 i

kj

−1 −i

−k−j

N

jN

iN

kN

G = Q8
φ

π N iN

jN kN

Q8/N∼=V4

ι

H = A4

e x

z y

a c

d b

d2

b2a2

c2

Im(φ)

φ = ι ◦ π
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The “subgroup” and “quotient” operations commute

Key idea
The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group G = SL2(Z3).

〈1〉

〈a3〉

〈a2〉 〈b2〉 〈(ab)2〉 〈(ba)2〉

〈a2b〉 〈aba〉 〈ab2〉

〈a〉 〈b〉 〈ab〉 〈ba〉

〈a2b, ab2〉

G = 〈a, b〉

〈1〉

〈a3〉

〈a2b〉 〈aba〉 〈ab2〉

〈a2b, ab2〉

subgroup H ∼= Q8

〈a3〉/N

〈a2b〉/N 〈aba〉/N 〈ab2〉/N

〈a2b, ab2〉/N

H/N ∼= V4

“quotient of the subgroup”
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The “subgroup” and “quotient” operations commute

Key idea
The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group G = SL2(Z3).

quotient G/N ∼= A4

〈1〉

〈a3〉/N

〈a2〉 〈b2〉 〈(ab)2〉 〈(ba)2〉

〈a2b〉/N 〈aba〉/N 〈ab2〉/N

〈a〉/N 〈b〉/N 〈ab〉/N 〈ba〉/N

〈a2b, ab2〉/N

〈a, b〉/N

V4 ∼= H/N ≤ G/N

〈a3〉/N

〈a2b〉/N 〈aba〉/N 〈ab2〉/N

〈a2b, ab2〉/N

“subgroup of the quotient”
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Commutators
We contructed Z12 ∼= Z/〈12〉 by “forcing” multiples of 12 to be zero (kernel of a quotient).

A commutator is an element of the form aba−1b−1.

ab = ba ∗ ab 6= ba ∗

Definition
The commutator subgroup of G is

G ′ :=
〈
aba−1b−1 | a, b ∈ G

〉
.

Do you see why G ′ E G? [Hint: Consider the product gcg−1 and c−1.]

Definition
The abelianization of G is the quotient group G/G ′.

G ′ is the smallest normal subgroup N of G such that G/N is abelian.

G/G ′ is the largest abelian quotient of G .
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Some examples of abelianizations
By the isomorphism theorems, we can usually identitfy the commutator subgroup G and
abelianation by inspection, from the subgroup lattice.

D4

〈r2, f 〉 〈r〉 〈r2, rf 〉

〈f 〉 〈r2f 〉 〈r2〉 〈r3f 〉 〈rf 〉

〈1〉

Dic6

〈r〉

〈r3〉
〈r2〉

〈s〉 〈rs〉 〈sr〉

〈1〉

A4

〈(12)(34), (13)(24)〉

〈(234)〉〈(134)〉〈(124)〉〈(123)〉

〈(12)(34))〉 〈(13)(24)〉 〈(14)(23))〉

〈e〉
SA8

〈rs〉〈r2, s〉 〈r〉

〈r4, s〉 〈r2s〉 〈r2〉

〈s〉 〈r4s〉 〈r4〉

〈1〉
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Automorphisms

An automorphism of G is a homomorphism φ : G → G .

The set of automorphisms of G defines the automorphism group of G , denoted Aut(G).

Proposition

The automorphism group of Zn is Aut(Zn) =
{
σa | a ∈ Un

} ∼= Un, where

σa : Zn −→ Zn , σa(1) = a .

1σ1

1σ2 1σ3

1σ6

U7 = 〈3〉 ∼= C6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

2

4

6

1

3

5

3

6

2

5

1

4

4

1

5

2

6

3

5

3

1

6

4

2

6

5

4

3

2

1

Aut(C7) = 〈σ3〉 ∼= U7

σ1

σ2

σ3

σ4

σ5

σ6

σ1 σ2 σ3 σ4 σ5 σ6

σ1

σ2

σ3

σ4

σ5

σ6

σ2

σ4

σ6

σ1

σ3

σ5

σ3

σ6

σ2

σ5

σ1

σ4

σ4

σ1

σ5

σ2

σ6

σ3

σ5

σ3

σ1

σ6

σ4

σ2

σ6

σ5

σ4

σ3

σ2

σ1
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An example: the automorphism group of C7

Aut(C7) ∼= U7 = 〈3〉 1

rr2

r3

r4

r5
r6

Id=σ1

“tripling map” σ3

U7 = 〈3〉
1

rr2

r3

r4

r5
r6

φ
“doubling map” σ2

32 ≡ 2 (mod 7)
1

rr2

r3

r4

r5
r6

φ2

“sextupling map” σ6

33 ≡ 6 (mod 7)
1

rr2

r3

r4

r5
r6

φ3

“quadrupling map” σ4

34 ≡ 4 (mod 7)
1

rr2

r3

r4

r5
r6

φ4
“quintupling map” σ5

35 ≡ 5 (mod 7)
1

rr2

r3

r4

r5
r6

φ5
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Automorphisms of noncyclic groups

Key idea
Think of an automorphism as a “structure-preserving” rewiring of the Cayley graph.

1

r r2

r3

Id

Cayley graph of C4

1

r r2

r3

ϕ

edges rewired

1

r3 r2

r

ϕ

nodes relabeled

1

r r2

r3

not an autom.

Examples
1. Every permutation of {h, v , r} defines an automorphism, so Aut(V4) ∼= S3.

2. Every φ ∈ Aut(D3) is determined by φ(r) and φ(f ). Since they preserve order

φ(1) = 1 , φ(r) = r or r2︸ ︷︷ ︸
2 choices

, φ(f ) = f , rf , or r2f︸ ︷︷ ︸
3 choices

.

Thus, |Aut(D3)| ≤ 6. The following are noncommuting automorphisms:{
α(r) = r
α(f ) = rf

{
β(r) = r2

β(f ) = f
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Automorphisms of V4 = 〈h, v〉

The following permutations are both automorphisms:

α : h v hv and β : h v hv

h id7−→ h

v 7−→ v

hv 7−→ hv

e

v

h

hv

h α7−→ v

v 7−→ hv

hv 7−→ h

e

v

h

hv

h α27−→ hv

v 7−→ h

hv 7−→ v

e

v

h

hv

h
β7−→ v

v 7−→ h

hv 7−→ hv

e

v

h

hv

h
αβ7−→ h

v 7−→ hv

hv 7−→ v

e

v

h

hv

h
α2β7−→ hv

v 7−→ v

hv 7−→ h

e

v

h

hv
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Automorphisms of V4 = 〈h, v〉

Here is the Cayley table and Cayley graph of Aut(V4) = 〈α, β〉 ∼= S3 ∼= D3.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

Recall that α and β can be thought of as the permutations h v hv and h v hv
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Automorphisms of D3

α : r r2 f rf r2f and β : r r2 f rf r2f

r id−→ r

f −→ f f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f

r α−→ r

f −→ rf f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f

r α2−→ r

f −→ r2f f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f

f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f
r

β−→ r2

f −→ f

f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f
r
αβ−→ r2

f −→ r2f

f

rf

r2f

1

r2

r 1

r2f

r2

rf

r

f
r
α2β−→ r2

f −→ rf
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Automorphisms of D3

Here is the Cayley table and Cayley graph of Aut(D3) = 〈α, β〉.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

α : r r2 f rf r2f and β : r r2 f rf r2f
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Automorphisms of D3

Here is the Cayley table and Cayley graph of Aut(D3) = 〈α, β〉.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

α : r r2 f rf r2f and β : r r2 f rf r2f
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Semidirect products

Consider the following “inflation” construction of the Cayley graph of a direct product:

1

s

Start with a
copy of B = C2

1 r r2 r3

s rs r2s r3s

Inflate each node, insert A = C4 in each
and connect corresponding nodes with edges

(1,1) (r ,1) (r2,1) (r3,1)

(1,s) (r ,s) (r2,s) (r3,s)

“pop” each inflated node to get the
direct product C4 × C2

Reversing the red arrows in the bottom “balloon” would result in a Cayley graph for D4.

We say that D4 is the semidirect product of C4 and C2, written D4 ∼= C4 o C2.

Key point
For groups A,B we need a “labeling map” homomorphism

θ : B −→ Aut(A),

where θ(b) describes: “which rewiring of A we stick into balloon b ∈ B”.

M. Macauley (Clemson) Chapter 4: Maps between groups Math 8510, Abstract Algebra 48 / 81

mailto:macaule@clemson.edu


Semidirect products

Let’s construct all semidirect products of A = C5 = 〈a〉 with B = C4 = 〈b〉.

1

a

a2

a3

a4

Id = ϕ0

starting graph

1

a

a2

a3

a4

ϕ

a1 7→ (a1)2=a2

1

a

a2

a3

a4

ϕ2

a2 7→ (a2)2=a4

1

a

a2

a3

a4

ϕ3

a4 7→ (a4)2=a3

Aut(C5) ∼= U(4) ∼= C4 = 〈ϕ〉 is generated by the “doubling map”.

Aut(C5) =
{
1, ϕ, ϕ2, ϕ3

} ∼= C4

1

ϕ ϕ2

ϕ3

Aut(C5)

Each “labeling map”
θi : C4 −→ Aut(C5)

each is determined by θi (b) = ϕi , for i = 0, 1, 2, 3.
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An example: the direct product of C5 and C4

Let’s construct the “trivial” semidirect product, C5 oθ0C4 = C5 × C4:

ϕ0

ϕ1 ϕ2

ϕ3

Aut(C5)

“rewirings”

1

b b2

b3

C4

“balloons”

“ labeling map”

C4
θ0−→ Aut(C5)

bk 7−→ ϕ0

ϕ0ϕ0

ϕ0 ϕ0

θ0(C4)

“ labels”

Stick in non-rewired copies of A, and then reconnect the B-arrows.

θ0 : C4 −→ Aut(C5)

θ0 : bk 7−→ ϕ0

1

a
a2

a3
a4

ϕ0

1

a
a2

a3
a4

ϕ0 1

a
a2

a3
a4

ϕ0

1

a
a2

a3
a4

ϕ0

C5 × C4

1

a
a2

a3

a4

b

ab
a2b

a3b
a4b

b2

ab2

a2b2

a3b2

a4b2

b3

ab3

a2b3

a3b3

a4b3
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An example: the 1st semidirect product of C5 and C4

Let’s construct the semidirect product C5 oθ1C4:

ϕ0

ϕ1 ϕ2

ϕ3

Aut(C5)

“rewirings”

1

b b2

b3

C4

“balloons”

“ labeling map”

C4
θ1−→ Aut(C5)

bk 7−→ ϕk

ϕ0

ϕ1 ϕ2

ϕ3

θ1(C4)

“ labels”

Stick in θ1-rewired copies of A, and then reconnect the B-arrows.

θ1 : C4 −→ Aut(C5)

θ1 : bk 7−→ ϕk

1

a
a2

a3
a4

ϕ0

1

a
a2

a3
a4

ϕ1 1

a
a2

a3
a4

ϕ2

1

a
a2

a3
a4

ϕ3

C5oθ1C4

1

a
a2

a3

a4

b

ab
a2b

a3b
a4b

b2

ab2

a2b2

a3b2

a4b2

b3

ab3

a2b3

a3b3

a4b3
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An example: the 2nd semidirect product of C5 and C4

Let’s now construct a different semidirect product, C5 oθ2C4:

ϕ0

ϕ1 ϕ2

ϕ3

Aut(C5)

“rewirings”

1

b b2

b3

C4

“balloons”

“ labeling map”

C4
θ2−→ Aut(C5)

bk 7−→ ϕ2k

ϕ0

ϕ2 ϕ0

ϕ2

θ2(C4)

“ labels”

Stick in θ2-rewired copies of A, and then reconnect the B-arrows.

θ2 : C4 −→ Aut(C5)

θ1 : bk 7−→ ϕ2k

1

a
a2

a3
a4

ϕ0

1

a
a2

a3
a4

ϕ2 1

a
a2

a3
a4

ϕ0

1

a
a2

a3
a4

ϕ2

C5oθ2C4

1

a
a2

a3

a4

b

ab
a2b

a3b
a4b

b2

ab2

a2b2

a3b2

a4b2

b3

ab3

a2b3

a3b3

a4b3
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Rewiring edges vs. re-labeling nodes

C5 oθ1 C4

1 a a2 a3 a4

b ab a2b a3b a4b

b2 ab2 a2b2 a3b2 a4b2

b3 ab3 a2b3 a3b3 a4b3

1 a a2 a3 a4

b aba2b a3ba4b

b2 ab2a2b2a3b2a4b2

b3 ab3 a2b3a3b3 a4b3

C5 oθ2 C4

1 a a2 a3 a4

b ab a2b a3b a4b

b2 ab2 a2b2 a3b2 a4b2

b3 ab3 a2b3 a3b3 a4b3

1 a a2 a3 a4

b a4b a3b a2b ab

b2 ab2 a2b2 a3b2 a4b2

b3 a4b3 a3b3 a2b3 ab3
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An example: the 3rd semidirect product of C5 and C4

Let’s construct the last semidirect product C5 oθ3C4:

ϕ0

ϕ1 ϕ2

ϕ3

Aut(C5)

“rewirings”

1

b b2

b3

C4

“balloons”

“ labeling map”

C4
θ3−→ Aut(C5)

bk 7−→ ϕ3k

ϕ0

ϕ3 ϕ2

ϕ1

θ3(C4)

“ labels”

Sticking in θ3-rewired copies yields the same Cayley diagram as C5 oθ1 C4:

θ3 : C4 −→ Aut(C5)

θ3 : bk 7−→ ϕ3k

1

a
a2

a3
a4

ϕ0

1

a
a2

a3
a4

ϕ3 1

a
a2

a3
a4

ϕ2

1

a
a2

a3
a4

ϕ1

C5oθ3C4

1

a
a2

a3

a4

b

ab
a2b

a3b
a4b

b2

ab2

a2b2

a3b2

a4b2

b3

ab3

a2b3

a3b3

a4b3
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Semidirect products of C8 and C2

There are four automorphisms of C8 = 〈r〉:

1

r
r2

r3

r4

r5

r6
r7

Id = σ1 1

r
r2

r3

r4

r5

r6
r7

σ=σ3 1

r
r2

r3

r4

r5

r6
r7

µ=σ5 1

r
r2

r3

r4

r5

r6
r7

δ=σ7

All three non-trivial rewirings have order 2, so Aut(C8) = U(8) ∼= V4:

r σ−→ r3 σ−→(r3)3= r9= r , r
µ−→ r5

µ−→(r5)5= r25= r , r δ−→ r7 δ−→(r7)7= r49= r .

There are four labeling maps θk : C2 −→ Aut(C8) ∼= V4:

σId

µ δ

Aut(C8)

1

s

Id

Id

s
θ17−→ Id

Id

σ

s
θ37−→ σ

Id

µ

s
θ57−→ µ

Id

δ

s
θ77−→ δ
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The four semidirect products C8 oi C2

Id

θ1(b) = Id

1 r r2 r3 r4 r5 r6 r7

s sr sr2 sr3 sr4 sr5 sr6 sr7

Id

θ7(s) = δ

1 r r2 r3 r4 r5 r6 r7

s sr sr2 sr3 sr4 sr5 sr6 sr7

Id

θ3(s) = σ

1 r r2 r3 r4 r5 r6 r7

s sr sr2 sr3 sr4 sr5 sr6 sr7

Id

θ5(s) = µ

1 r r2 r3 r4 r5 r6 r7

s sr sr2 sr3 sr4 sr5 sr6 sr7
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Semidirect products of C2m and C2

Lemma

For any n ≥ 3, the equation x2 ≡ 1 (mod 2n) has four solutions: ±1 and 2n−1±1.

There are four “labeling maps”

θi : C2 −→ Aut(C2m ) ∼= U(2m) = 〈ϕ〉, θi (b) = ϕi

one for each i of order 1 or 2 in U(2m).

Corollary
For each n = 2m, there are four distinct semidirect products of Cn with C2:

1. Cn oθ1C2 ∼= Cn × C2,

2. Cn oθσC2 ∼= SDn,

3. Cn oθµC2 ∼= SAn,

4. Cn oθδC2 ∼= Dn,

The labeling maps define the automorphisms:

r
θ17−→ r , r θσ7−→ r2

m−1−1, r
θµ7−→ r2

m−1+1, r
θδ7−→ r−1.
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The smallest nonabelian group of odd order: C7 oθ C3

Recall that Aut(C7) = U(7) ∼= C6 = 〈ϕ〉.

1ϕ0 1ϕ 1ϕ2 1ϕ3 1ϕ4 1ϕ5

ϕ0

ϕ1ϕ2

ϕ3

ϕ4 ϕ5

Aut(C7)

C3
θ−→ Aut(C7)

sk 7−→ ϕ2k

s2

rs2
r2s2

r3s2

r4s2

r5s2
r6s2

s

rs
r2s

r3s

r4s

r5s

r6s

1

r

r2

r3

r4

r5

r6
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The construction of V4 o C2
There are four labeling maps: θi : C2 −→ Aut(V4) ∼= D3:

β

αβ

α2β

Id

α2

α

1

s

Id

Id

s θ7−→ Id

Id

β

s
θ07−→ β

Id

αβ

s
θ17−→ αβ

Id

α2β

s
θ27−→ α2β

The nontrivial ones define isomorphic semidirect products, V4 o C2:

1

s

Start with a
copy of B = C2

1 a ab b
Id

β
c ac abc bc

Inflate each node, insert rewired versions
of A = V4, and connect corresponding nodes

ab

b 1

a

abc

bc c

ac

rearrange the Cayley graph
What familiar group is V4 o C2?
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The inner automorphism group

Definition
An inner automorphism of G is an automorphism ϕx ∈ Aut(G) defined by

ϕx (g) := x−1gx , for some x ∈ G .

The inner automorphisms of G form a group, denoted Inn(G). (Exercise)

There are four inner automorphisms of D4:

Id = ϕ1 = ϕr2
1

r2

r

r3

f r2f

rf r3f

ϕr = ϕr3
1

r2

r

r3

f r2f

rf r3f

ϕf = ϕr2f
1

r2

r

r3

f r2f

rf r3f

ϕrf = ϕr3f
1

r2

r

r3

f r2f

rf r3f

Since ϕ2
x = Id for all of these, Inn(D4) = 〈ϕr , ϕf 〉 ∼= V4.

Are there any other automorphisms of D4?
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The inner automorphism group

Proposition (exercise)

Inn(G) is a normal subgroup of Aut(G).

Remarks

Many books define ϕx (g) = xgx−1. Our choice is so ϕxy = ϕxϕy (reading L-to-R).

If z ∈ Z(G), then ϕz ∈ Inn(G) is trivial.

If x = yz for some Z(G), then ϕx = ϕy in Inn(G):

ϕx (g) = x−1gx = (yz)−1g(yz) = z−1(y−1gy)z = y−1gy = ϕy (g).

That is, if x and y are in the same coset of Z(G), then ϕx = ϕy . (And conversely.)

Z rZ fZ rfZ

1

r2

r

r3

f

r2f

rf

r3f

cosets of Z(D4) are
in bijection with inner
automorphisms of D4

cl(1)

cl(r2)

cl(r) cl(f ) cl(rf )

1

r2

r

r3

f

r2f

rf

r3f

inner automorphisms of
D4 permute elements

within conjugacy classes

Id

ϕrf

ϕf

ϕr

Inn(D4)
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The inner automorphism group

Key point
Two elements x , y ∈ G are in the same coset of Z(G) if and only if ϕx = ϕy in Inn(G).

Proposition
In any group G , we have G/Z(G) ∼= Inn(G).

Proof
Consider the map

f : G −→ Inn(G), x 7−→ ϕx ,

It is straightfoward to check this this is (i) a homomorphism, (ii) onto, and (iii) that
Ker(f ) = Z(G).

The result is now immediate from the FHT. �

We just saw that Aut(D3) ∼= D3, and we know that Z(D3) = 〈1〉. Therefore,

Inn(D3) ∼= D3/Z(D3) ∼= D3 ∼= Aut(D3),

i.e., every automorphism is inner.
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Inner automorphisms of D3

Let’s label each φ ∈ Aut(D3) with the corresponding inner automorphism.

r Id−→ r

f −→ f f

rf

r2f

1

r2

r

ϕ1

1

r2f

r2

rf

r

f

r α−→ r

f −→ rf f

rf

r2f

1

r2

r

ϕr

1

r2f

r2

rf

r

f

r α2−→ r

f −→ r2f f

rf

r2f

1

r2

r

ϕr2

1

r2f

r2

rf

r

f

f

rf

r2f

1

r2

r

ϕf

1

r2f

r2

rf

r

f
r

β−→ r2

f −→ f

f

rf

r2f

1

r2

r

ϕrf

1

r2f

r2

rf

r

f
r
αβ−→ r2

f −→ r2f

f

rf

r2f

1

r2

r

ϕr2f

1

r2f

r2

rf

r

f
r
α2β−→ r2

f −→ rf
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Automorphisms of D4

Every automorphism of D4 = 〈r , f 〉 is determined by where it sends the generators:

φ(r) = r or r3︸ ︷︷ ︸
2 choices

, φ(f ) = f , rf , r2f , r3f , or r2︸ ︷︷ ︸
5 choices

.

Thus |Aut(D4)| ≤ 10. But Inn(D4) ≤ Aut(D4), forces |Aut(D4)| = 4 or 8. Moreover,

ω : D4 −→ D4, ω(r) = r , ω(f ) = rf

is an (outer) automorphism, which swaps the “two types” of reflections of the square.

ω
1

r2

r

r3

f r2f

rf r3f

ϕrω
1

r2

r

r3

f r2f

rf r3f

ϕfω
1

r2

r

r3

f r2f

rf r3f

ϕrfω
1

r2

r

r3

f r2f

rf r3f

Aut(D4) =
{
Id , ϕr , ϕf , ϕrf , ω, ϕrω, ϕf ω, ϕrf ω

}
= Inn(D4) ∪ Inn(D4)ω ∼= D4.
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The full automorphism group of D4

Inn(D4) = 〈ϕr , ϕf 〉 Inn(D4)ω

Id = ϕ1
1

r2

r

r3

f r2f

rf r3f

ϕr
1

r2

r

r3

f r2f

rf r3f

ϕf
1

r2

r

r3

f r2f

rf r3f

ϕrf
1

r2

r

r3

f r2f

rf r3f

ω
1

r2

r

r3

f r2f

rf r3f

ϕrω
1

r2

r

r3

f r2f

rf r3f

ϕfω
1

r2

r

r3

f r2f

rf r3f

ϕrfω
1

r2

r

r3

f r2f

rf r3f
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The outer automorphism group

Definition
An outer automorphism of G is any automorphism that is not inner.

The outer automorphism group of G is the quotient Out(G) := Aut(G)/ Inn(G).

Aut(D4)

Inn(D4)=〈ϕr , ϕf 〉 〈ω〉 〈ϕr , ϕf ω〉

〈ϕf 〉 〈ϕrf 〉 〈ϕr 〉 〈ϕf ω〉 〈ϕrf ω〉

〈Id〉

Out(D4) ∼=C2

ϕrf

Id ϕf

ϕr

ϕrω

ϕf ω ω

ϕrf ω

Aut(D4) ∼= Inn(D4)o Out(D4)

Note that there are four outer automorphisms, but |Out(D4)| = 2.

We have seen: Out(V4) ∼= D3, Out(D3) ∼= {Id}, Out(D4) ∼= C2, Out(Q8) ∼= S3.
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Class automorphisms

Proposition (exercise)
Automorphisms permute conjugacy classes. That is, g, h ∈ G are conjugate if and only if
φ(g) and φ(h) are conjugate.

It is natural to ask if an automorphism being inner is equivalent to being the identity
permutation on conjugacy classes.

In other words:

“ if φ ∈ Aut(G) sends every element to a conjugate, must φ ∈ Inn(G)?”

The answer is “no”. Burnside found examples of groups of order at least 729 that admit
such an automorphism.

Definition
A class automorphism is an automorphism that sends every element to another in its
conjugacy class.

In 1947, G.E. Wall found a group of order 32 with a class automorphism that is outer.
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Semidirect products, algebraically

Thus far, we’ve see how to construct Aoθ B with our “inflation method.”

Given A (for “automorphism”) and B (for “balloon”), we label each inflated node b ∈ B
with φ ∈ Aut(A) via some labeling map

θ : B −→ Aut(A).

Of course can all be defined algebraically. Denote multiplication in A× B by

(a1, b1) · (a2, b2) = (a1a2, b1b2).

Definition
The (external) semidirect product Aoθ B of A and B, with respect to the homomorphism

θ : B −→ Aut(A),

is on the underlying set A× B, where the binary operation ∗ is defined as

(a1, b1) ∗ (a2, b2) := (a1, b1) · (θ(b1)a2, b2) = (a1θ(b1)a2, b1b2).

The isomorphic group on B × A by swapping the coordinates above is written B nθ A.
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An example: the direct product C5 × C4

〈
a, b | a5 = b4 = 1, ab = ba

〉
(a1, b1) · (a2, b2) := (a1a2, b1b2)

a1b1 · a2b2 = a1a2b1b2

1. follow the a1-path and b1-path in either order

2. we’re now at the a1-node in the b1-balloon.

3. follow the a2-path and b2-path in either order.

1

a

a2

a3

a4

ϕ0

b

ab

a2b

a3b
a4b

ϕ0 b2

ab2

a2b2

a3b2

a4b2

ϕ0

b3

ab3

a2b3

a3b3

a4b3

ϕ0
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An example: the semidirect product C5 oθ C4

C5 oθ1 C4
〈
a, b | a5 = b4 = 1, ab = ba3

〉
(a1, b1) ∗ (a2, b2) := (a1, b1) · (θ(b1)a2, b2)

= (a1θ(b1)a2, b1b2)

1. follow the a1-path and b1-path in either order

2. we’re now at the a1-node in the b1-balloon.

3. re-wire the A-Cayley graph via θ(b1) ∈ Aut(A)

4. follow the a2-path and b2-path in either order.

1

a

a2

a3

a4

ϕ0

b

ab

a2b

a3b
a4b

ϕ1 b2

ab2

a2b2

a3b2

a4b2

ϕ2

b3

ab3

a2b3

a3b3

a4b3

ϕ3
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Semidirect products, algebraically

Recall how to multipy in Aoθ B:

(a1, b1) ∗ (a2, b2) := (a1, b1) · (θ(b1)a2, b2) = (a1θ(b1)a2, b1b2).

Lemma
The subgroup A× {1} is normal in Aoθ B.

Proof
Let’s conjugate an arbitrary element (g, 1) ∈ A× {1} by an element (a, b) ∈ Aoθ B.

(a, b)(x , 1)(a, b)−1 = (a θ(b)g, b)(a−1, b−1) = (a θ(b)g θ(b)a−1︸ ︷︷ ︸
∈A

, 1) ∈ A× {1}.

Not all books use the same notation for semidirect product. Ours is motivated by:

In A× B, both factors are normal (technically, A× {1} and {1} × B).

In Ao B, the group on the “open” side of o is normal.
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Internal products

Previously, we’ve looked at outer products: taking two unrelated groups and constructing a
direct or semidirect product.

Now, we’ll explore when a group G = NH is isomorphic to a direct or semidirect product.

These are called internal products. Let’s see two examples:

ϕ0

ϕ0

θ0 : r 7→ ϕ0

1 r2 r4

r3 r5 r

C6 = NH ∼= N × H

G=C6

N=〈r2〉

H=〈r3〉

ϕ0

ϕ1

θ1 : r 7→ ϕ

1 r r2

f r2f rf

D3 = NH ∼= N oθ H

G=D3

N=〈r〉

H=〈f〉

Questions
Can we characterize when NH ∼= N × H and/or NH ∼= N oθ H?
If NH ∼= N oθ H, then what is the map θ : H → Aut(N)?
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Internal direct products
When G = NH is isomorphic to N × H, we have an isomorphism

i : N × H −→ NH, i : (n, h) 7−→ nh.

Since N×{1} and {1}×H are normal in N×H, the subgroups N and H are normal in NH.

Recall that earlier, we showed that

|NH| =
|N| · |H|
|N ∩ H|

,

and so it follows that if NH ∼= N × H, then N ∩ H = {e}.

Theorem
Let N,H ≤ G . Then G ∼= N × H iff the following conditions hold:

(i) N and H are normal in G

(ii) N ∩ H = {e}
(iii) G = NH.

Remark
This has a very nice interpretation in terms of subgroup lattices! Groups for which (ii) and
(iii) hold are called lattice complements.
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Internal semidirect products

When G = NH is isomorphic to N oθ H, we have an isomorphism

i : N oθ H −→ NH, i : (n, h) 7−→ nh.

This time, only N × {1} needs to be normal in N × H, and so N E NH.

As before, from

|NH| =
|N| · |H|
|N ∩ H|

,

we conclude that if NH ∼= N oθ H, then N ∩ H = {e}.

Theorem
Let N,H ≤ G . Then G ∼= N o H iff the following conditions hold:

(i) N is normal in G

(ii) N ∩ H = {e}
(iii) G = NH,

and the homomorphism θ sends h to the inner automorphism ϕh−1 :

θ : H −→ Aut(N), θ : h 7−→
(
n
ϕh−17−→ h−1nh

)
.

Let’s do several examples for intution, before proving this.
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Examples of internal semidirect products

Q16

〈r2, s〉 〈r〉 〈r2, rs〉

〈s〉 〈sr2〉 〈r2〉 〈sr〉 〈sr3〉

〈r4〉

〈1〉

SD8

〈r2, s〉 〈r〉 〈r2, rs〉

〈r4, s〉 〈r2s, r4〉 〈r2〉 〈rs〉 〈r3s〉

〈r4〉〈s〉 〈r4s〉 〈r2s〉 〈r6s〉

〈1〉

Observations
The group SD8 decomposes as a semidirect product several ways:

N = 〈r〉 ∼= C8, H = 〈s〉 ∼= C2, SD8 = NH ∼= C8 oθ3 C2.

or alternatively,

N = 〈r2, rs〉 ∼= Q8, H = 〈s〉 ∼= C2, SD8 = NH ∼= Q8 oθ′ C2.

The group Q16 does not decompose as a semidirect product!
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Semidihedral groups as semidirect products

s

rs
r2s

r3s

r4s

r5s

r6s

r7s

1

r

r2

r3

r4

r5

r6

r7

C8 s

rs
r2s

r3s

r4s

r5s

r6s

r7s

1

r

r2

r3

r4

r5

r6

r7

Q8 s

rs
r2s

r3s

r4s

r5s

r6s

r7s

1

r

r2

r3

r4

r5

r6

r7

Q8

SD8

〈r2, s〉 〈r〉 〈r2, rs〉

〈r4, s〉 〈r2s, r4〉 〈r2〉 〈rs〉 〈r3s〉

〈r4〉〈s〉 〈r4s〉 〈r2s〉 〈r6s〉

〈1〉

SD8 ∼= 〈r〉o 〈s〉 ∼= C8 o C2

SD8 ∼= 〈r2, rs〉o 〈s〉 ∼= Q8 o C2
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Generalized quaternion groups

Recall that a generalized quaternion group is a dicyclic group whose order is a power of 2.

It’s not hard to see that r8 = s2 = −1 is contained in every cyclic subgroup.

s

rs

r2s

r3s
r4s

r5s

r6s

r7s

r8s

r9s

r10s

r11s
r12s

r13s

r14s

r15s

1

r

r2

r3
r4

r5

r6

r7

r8

r9

r10

r11
r12

r13

r14

r15

Q32

〈r2, s〉 〈r〉 〈r2, rs〉

〈r4, s〉 〈r4, r2s〉 〈r2〉 〈r4, rs〉 〈r4, r3s〉

〈s〉 〈r4s〉 〈r2s〉 〈r6s〉 〈r4〉 〈rs〉 〈r5s〉 〈r3s〉 〈r7s〉

〈r8〉

〈1〉

Therefore, Q2n 6∼= N o H for any of its nontrivial subgroups.
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Internal semidirect products and inner automorphisms

Theorem
Let N,H ≤ G . Then G ∼= N o H iff the following conditions hold:

(i) N is normal in G

(ii) N ∩ H = {e}
(iii) G = NH,

and the homomorphism θ sends h to the inner automorphism ϕh:

θ : H −→ Aut(N), θ : h 7−→
(
n
ϕh−17−→ h−1nh

)
.

Proof
We only need to establish that θ sends h 7→ ϕh−1 .

Take n1h1 and n2h2 in NH. Their product is

(n1h1) ∗ (n2h2) = n1θ(h1)n2h1h2

for some θ(h1) ∈ Aut(N).

To see why θ(h1) is the inner automorphism ϕh1 , note that

n1ϕh−11
(n2)h1h2 = n1(h−11 n2h1)h1h2 = (n1h1) ∗ (n2h2). �
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Internal direct and semidirect products
How many ways does D6 decompose as an direct or semidirect product of its subgroups?

D6

〈r2f, f〉 〈r2, rf 〉〈r〉

〈r3, f 〉 〈r3, rf 〉〈r3, r2f 〉

〈r2〉

〈r3〉 〈f〉 〈r4f 〉 〈r2f 〉 〈r3f 〉 〈rf 〉 〈r5f 〉

〈1〉

1 r r2 r3 r4 r5

f rf r2f r3f r4f r5f

1 f r4 r4f r2 r2f

r3 r3f r rf r5 r5f
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Central products

The following 3 conditions characterize when G = NH ∼= N × H.

1. H and N are normal,

2. G = 〈H,N〉,
3. H ∩ N = 〈1〉.

If weaken the first to only N being normal, we get G = NH ∼= N o H.

Alernatively, we can keep the first two but weaken the third.

Definition
Suppose H and N are subgroups of G satisfying:

1. H and N are normal,

2. G = 〈H,N〉,
3. H ∩ N ≤ Z(G).

The G is an internal central product of H and K , denoted G ∼= H ◦ K .

We can also define an external central product of A and B, but we won’t do that here.
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Central products

The diquaternion group DQ8 is a central product two nontrivial ways:

DQ8 ∼= C4 ◦Q8

DQ8 ∼= C4 ◦D4.

Recall that Z(DQ8) = N ∼= C4.

DQ8

C4×C2 D4 C4×C2 D4 C4×C2 D4=K Q8=H

V4 V4 V4 C4=N C4 C4 C4

C2 C2 C2 C2 C2 C2 C2=N∩ H=N∩ K

C1

Order = 16

8

4

2

1

Index = 1

2

4

8

16
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