Chapter 4: Maps between groups

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra

Homomorphisms

Definition

A homomorphism is a function $\phi: G \rightarrow H$ between two groups satisfying

$$
\phi(a b)=\phi(a) \phi(b), \quad \text { for all } a, b \in G .
$$

An isomorphism is a bijective homomorphism.

The Greek roots "homo" and "morph" together mean "same shape."
The homormorphism $\phi: G \rightarrow H$ is an
■ embedding if ϕ is one-to-one: " G is a subgroup of H."

- quotient map if ϕ is onto: " H is a quotient of G."

We'll see that even if ϕ is neither, it can be decomposed as a composition $\phi=\pi \circ \iota$ of an embedding with a quotient.

We will use standard function terminology:

- the group G is the domain
- the group H is the codomain
- the image is what is often called the range:

$$
\operatorname{Im}(\phi)=\phi(G)=\{\phi(g) \mid g \in G\}
$$

Embeddings vs. quotients: A preview

The difference between embeddings and quotient maps can be seen in the subgroup lattice:

In one of these groups, D_{5} is subgroup. In the other, it arises as a quotient.
This, and much more, will be consequences of the celebrated isomorphism theorems.

Homomorphisms

The condition $\phi(a b)=\phi(a) \phi(b)$ means that the map ϕ preserves the structure of G. It has visual interpretations on the level of Cayley graphs and Cayley tables.

Note that in the Cayley graphs, b and $\phi(b)$ are paths; they need not just be edges.

Two basic properties of homomorphisms

Proposition

Let $\phi: G \rightarrow H$ be a homomorphism. Denote the identity of G and H by 1_{G} and 1_{H}.
(i) $\phi\left(1_{G}\right)=1_{H}$
" ϕ sends the identity to the identity"
(ii) $\phi\left(g^{-1}\right)=\phi(g)^{-1} \quad$ " ϕ sends inverses to inverses"

Proof

(i) Pick any $g \in G$. Now, $\phi(g) \in H$; observe that

$$
\phi\left(1_{G}\right) \phi(g)=\phi\left(1_{G} \cdot g\right)=\phi(g)=1_{H} \cdot \phi(g) .
$$

Therefore, $\phi\left(1_{G}\right)=1_{H}$.
(ii) Take any $g \in G$. Observe that

$$
\phi(g) \phi\left(g^{-1}\right)=\phi\left(g g^{-1}\right)=\phi\left(1_{G}\right)=1_{H} .
$$

Since $\phi(g) \phi\left(g^{-1}\right)=1_{H}$, it follows immediately that $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.

An embedding and an isomorphisms
Consider the homomorphism $\theta: \mathbb{Z}_{3} \rightarrow C_{6}$, defined by $\theta(n)=r^{2 n}$:

The following is an isomorphism:

$$
\phi: D_{3} \longrightarrow S_{3}, \quad \phi(r)=(123), \quad \phi(f)=(23)
$$

An example that is neither an embedding nor quotient
Consider the homomorphism $\phi: Q_{8} \rightarrow A_{4}$ defined by

$$
\phi(i)=(12)(34), \quad \phi(j)=(13)(24)
$$

Using the property of homomorphisms,

$$
\begin{gathered}
\phi(k)=\phi(i j)=\phi(i) \phi(j)=(12)(34)(13)(24)=(14)(23), \\
\phi(-1)=\phi\left(i^{2}\right)=\phi(i)^{2}=((12)(34))^{2}=e,
\end{gathered}
$$

and $\phi(-g)=\phi(g)$ for $g=i, j, k$.

Group representations

We've already seen how to represent groups as collections of matrices.
Formally, a (faithful) representation of a group G is a (one-to-one) homomorphism

$$
\phi: G \longrightarrow \mathrm{GL}_{n}(K)
$$

for some field K (e.g., $\mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$, etc. $)$

For example, the following 8 matrices form group under multiplication, isomorphic to Q_{8}.

$$
\left\{ \pm l, \quad \pm\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \pm\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \pm\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\right\} .
$$

Formally, we have an embedding $\phi: Q_{8} \rightarrow \mathrm{GL}_{4}(\mathbb{R})$ where

$$
\phi(i)=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \phi(j)=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \phi(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Notice how we can use the homomorphism property to find the image of the other elements.

Kernels and quotient maps

Definition

Let $\phi: G \rightarrow H$ be a homomorphism. The preimage of $h \in \operatorname{Im}(\phi)$ is

$$
\phi^{-1}(h):=\{g \in G \mid \phi(g)=h\} .
$$

Definition

The kernel of a homomorphism $\phi: G \rightarrow H$ is the set

$$
\operatorname{Ker}(\phi):=\phi^{-1}\left(1_{H}\right)=\left\{k \in G \mid \phi(k)=1_{H}\right\} .
$$

Exercise

The kernel of any homomorphism $\phi: G \rightarrow H$ is normal.

Proposition

Let $\phi: G \rightarrow H$ be a homomorphism. Then each preimage $\phi^{-1}(h)$ is a coset of $\operatorname{Ker}(\phi)$.

Proof (sketch)

Let $N=\operatorname{Ker}(\phi)$ and take any $g \in \phi^{-1}(h)$. (This means $\phi(g)=h$.)
Establish $\phi^{-1}(h)=g N$ by verifying both \subseteq and \supseteq.

The fundamental homomorphism theorem

Theorem (FHT)

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G / \operatorname{Ker}(\phi)$.

Let's see this by example:

$$
\phi: Q_{8} \longrightarrow V_{4}, \quad \phi(i)=v, \quad \phi(j)=h .
$$

$$
\begin{aligned}
& \phi(1)=e \\
& \phi(-1)=\phi\left(i^{2}\right)=\phi(i)^{2}=v^{2}=e \\
& \phi(k)=\phi(i j)=\phi(i) \phi(j)=v h=r \\
& \phi(-k)=\phi(j i)=\phi(j) \phi(i)=h v=r \\
& \phi(-i)=\phi(-1) \phi(i)=e v=v \\
& \phi(-j)=\phi(-1) \phi(j)=e h=h
\end{aligned}
$$

Visualizing the FHT via Cayley graphs

Visualizing the FHT via Cayley tables

Here's another way to think about the homomorphism

$$
\phi: Q_{8} \longrightarrow V_{4}, \quad \phi(i)=v, \quad \phi(j)=h
$$

as the composition of:

- a quotient by $N=\operatorname{Ker}(\phi)=\langle-1\rangle=\{ \pm 1\}$,
- a relabeling map $\iota: Q_{8} / N \rightarrow V_{4}$.

Proof of the FHT

Fundamental homomorphism theorem

If $\phi: G \rightarrow H$ is a homomorphism, then $\operatorname{Im}(\phi) \cong G / \operatorname{Ker}(\phi)$.

Proof

Let $N=\operatorname{Ker}(\phi)$, and define

$$
\iota: G / N \longrightarrow \operatorname{Im}(\phi), \quad \iota: g N \longmapsto \phi(g) .
$$

- Show ι is well-defined. We must show that if $a N=b N$, then $\iota(a N)=\iota(b N)$:

$$
a N=b N \quad \Longrightarrow \quad b^{-1} a N=N \quad \Longrightarrow \quad b^{-1} a \in N
$$

By definition of $b^{-1} a \in \operatorname{Ker}(\phi)$,

$$
1_{H}=\phi\left(b^{-1} a\right)=\phi\left(b^{-1}\right) \phi(a)=\phi(b)^{-1} \phi(a) \quad \Longrightarrow \quad \phi(a)=\phi(b)
$$

By definition of $\iota: \quad \iota(a N)=\phi(a)=\phi(b)=\iota(b N)$.

- Show ι is a homomorphism. $\quad \iota(a N \cdot b N)=\iota(a b N) \quad(a N \cdot b N:=a b N)$

$$
\begin{aligned}
\iota(a N \cdot b N) & =\iota(a b N) & & (a N \cdot b N:=a b N) \\
& =\phi(a b) & & (\text { definition of } \iota) \\
& =\phi(a) \phi(b) & & (\phi \text { is a homom. }) \\
& =\iota(a N) \iota(b N) & & (\text { definition of } \iota)
\end{aligned}
$$

Proof of FHT (cont.) [Recall: $\quad \iota: G / N \rightarrow \operatorname{Im}(\phi), \quad \iota: g N \mapsto \phi(g)]$

Proof (cont.)

- Show ι is injective (1-1): We must show that $\iota(a N)=\iota(b N)$ implies $a N=b N$.

$$
\begin{aligned}
\iota(a N)=\iota(b N) & \Longrightarrow \phi(a)=\phi(b) & & \text { (by definition) } \\
& \Longrightarrow \phi(b)^{-1} \phi(a)=1_{H} & & \\
& \Longrightarrow \phi\left(b^{-1} a\right)=1_{H} & & (\phi \text { is a homom.) } \\
& \Longrightarrow b^{-1} a \in N & & \text { (definition of } \operatorname{Ker}(\phi)) \\
& \Longrightarrow b^{-1} a N=N & & (a H=H \Leftrightarrow a \in H) \\
& \Longrightarrow a N=b N & &
\end{aligned}
$$

- Show ८ is surjective (onto).

Pick any $\phi(a) \in \operatorname{Im}(\phi)$. By defintion, $\iota(a N)=\phi(a)$.

Useful technique

Suppose we want to show that $G / N \cong H$. There are two approaches:
(i) Define $\phi: G / N \rightarrow H$ and prove it's a well-defined, bijective, homomorphism.
(ii) Define $\phi: G \rightarrow H$ and prove that it's a surjective homomorphism, and $\operatorname{Ker} \phi=N$.

Consequences of the FHT

Let's find all homomorphisms $\phi: \mathbb{Z}_{44} \rightarrow \mathbb{Z}_{16}$.
By the FHT,

$$
\mathbb{Z}_{44} / \operatorname{Ker}(\phi) \cong \operatorname{Im}(\phi) \leq \mathbb{Z}_{16} .
$$

This means that $44 /|\operatorname{Ker}(\phi)|$ must be $1,2,4,8$, or 16 .
Also, $|\operatorname{Ker}(\phi)|$ must divide 44 . We are left with three cases: $|\operatorname{Ker}(\phi)|=44,22$, or 11.

Reminder

For each $d \mid n$, the group \mathbb{Z}_{n} has a unique subgroup of order d, which is $\langle n / d\rangle$.

- Case 1: $|\operatorname{Ker}(\phi)|=44$, which forces $|\operatorname{Im}(\phi)|=1$, and so $\phi(1)=0$ is the trivial homomorphism.

■ Case 2: $|\operatorname{Ker}(\phi)|=22$. By the FHT, $|\operatorname{Im}(\phi)|=2$, which means $\operatorname{Im}(\phi)=\{0,8\}$, and so $\phi(1)=8$.

- Case 3: $|\operatorname{Ker}(\phi)|=11$. By the FHT, $|\operatorname{Im}(\phi)|=4$, which means $\operatorname{Im}(\phi)=\{0,4,8,12\}$.

There are two subcases: $\phi(1)=4$ or $\phi(1)=12$.

What does "well-defined" really mean?

Recall that we've seen the term "well-defined" arise in different contexts:

- a well-defined binary operation on a set G / N of cosets,
- a well-defined function $\iota: G / N \rightarrow H$ from a set (group) of cosets.

In both of these cases, well-defined means that:
our definition doesn't depend on our choice of coset representative.
Formally:

- If $N \unlhd G$, then $a N \cdot b N:=a b N$ is a well-defined binary operation on the set G / N of cosets, because

$$
\text { if } a_{1} N=a_{2} N \text { and } b_{1} N=b_{2} N \text {, then } a_{1} b_{1} N=a_{2} b_{2} N \text {. }
$$

- The map $\iota: G / N \rightarrow H$, where $\iota(a N)=\phi(a)$, is a well-defined homomorphism, meaning that

$$
\text { if } a N=b N \text {, then } \iota(a N)=\iota(b N) \text { (that is, } \phi(a)=\phi(b)) \text { holds. }
$$

Remark

Whenever we define a map and the domain is a quotient, we must show it's well-defined.

A picture of the isomorphism $\iota: \mathbb{Z} /\langle 12\rangle \longrightarrow \mathbb{Z}_{12}$

$$
\rightarrow(-3) \rightarrow(-1) \rightarrow(0) \rightarrow(1) \rightarrow(2) \rightarrow \cdots
$$

The Isomorphism Theorems

The Fundamental homomorphism theorem (FHT) is the first of four basic theorems about homomorphisms and their structure.

These are commonly called "The Isomorphism Theorems."
■ Fundamental homomorphism theorem: "All homomorphic images are quotients"

- Correspondence theorem: Characterizes "subgroups of quotients"
- Fraction theorem: Characterizes "quotients of quotients"
- Diamond theorem: Characterizes "quotients of a products by a factor"

These all have analogues for other algebraic structures, e.g., rings, vector spaces, modules, Lie algebras.

All of these theorems can look messy and unmotivated algebraically.

However, they all have beautiful visual interpretations, especially involving subgroup lattices.

The correspondence theorem: subgroups of quotients

Given $N \unlhd G$, the quotient G / N has a group structure, via $a N \cdot b N=a b N$.
Moreover, by the FHT theorem, every homomorphism image is a quotient.

Natural question

What are the subgroups of a quotient?

Fortunately, this has a simple answer that is easy to remember.

Correspondence theorem (informal)

The subgroups of the quotient G / N are quotients of the subgroups $H \leq G$ that contain N.
Moreover, "most properties" of $H / N \leq G / N$ are inherited from $H \leq G$.

This is best understood by interpreting the subgroup lattices of G and G / N.
Let's do some examples for intuition, and then state the correspondence theorem formally.

The correspondence theorem: subgroups of quotients
Compare $G=\operatorname{Dic}_{6}$ with the quotient by $N=\left\langle r^{3}\right\rangle$.

We know the subgroups structure of $G / N=\left\{N, r N, r^{2} N, s N, r s N, r^{2} s N\right\} \cong D_{3}$.
" The subgroups of the quotient G / N are the quotients of the subgroups that contain N."
"shoeboxes; lids on"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle r\rangle \leq G$
"shoeboxes; lids off"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle r\rangle / N \leq G / N$
"shoes out of the box"

$r^{2} N$	$r^{2} s N$
$r N$	$r s N$
N	$s N$

$\langle r N\rangle \leq G / N$

The correspondence theorem: subgroups of quotients

Here is the subgroup lattice of $G=\mathrm{Dic}_{6}$, and of the quotient G / N, where $N=\left\langle r^{3}\right\rangle$.

"The subgroups of the quotient G/N are the quotients of the subgroups that contain N."
"shoes out of the box"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle s\rangle \leq G$
" shoeboxes; lids off"

r^{2}	r^{5}	$r^{2} s$	$r^{5} s$
r	r^{4}	$r s$	$r^{4} s$
1	r^{3}	s	$r^{3} s$

$\langle s\rangle / N \leq G / N$
"shoeboxes; lids on"

$r^{2} N$	$r^{2} s N$
$r N$	$r s N$
N	$s N$

$\langle s N\rangle \leq G / N$

The correspondence theorem: subgroups of quotients

Correspondence theorem (informally)

There is a bijection between subgroups of G / N and subgroups of G that contain N.
"Everything that we want to be true" about the subgroup lattice of G / N is inherited from the subgroup lattice of G.

Most of these can be summarized as:
"The \qquad of the quotient is just the quotient of the \qquad "

Correspondence theorem (formally)

Let $N \leq H \leq G$ and $N \leq K \leq G$ be chains of subgroups and $N \unlhd G$. Then

1. Subgroups of the quotient G / N are quotients of the subgroup $H \leq G$ that contain N.
2. $H / N \unlhd G / N$ if and only if $H \unlhd G$
3. $[G / N: H / N]=[G: H]$
4. $H / N \cap K / N=(H \cap K) / N$
5. $\langle H / N, K / N\rangle=\langle H, K\rangle / N$
6. H / N is conjugate to K / N in G / N if and only if H is conjugate to K in G.

The correspondence theorem: subgroups of quotients

All parts of the correspondence theorem have nice subgroup lattice interpretations.
We've already interpreted the the first part.
Here's what the next four parts say.

The correspondence theorem: subgroups of quotients
The last part says that we can characterize the conjugacy classes of G / N from those of G.

Let's apply that to find the conjugacy classes of $C_{4} \rtimes C_{4}$ by inspection alone.

The correspondence theorem: subgroups of quotients
Let's prove the first (main) part of the correspondence theorem.

Correspondence theorem (first part)

The subgroups of the quotient G / N are quotients of the subgroup $H \leq G$ that contain N.

Proof

Let S be a subgroup of G / N. Then S is a collection of cosets, i.e.,

$$
S=\{h N \mid h \in H\},
$$

for some subset $H \subseteq G$. We just need to show that H is a subgroup.
We'll use the one-step subgroup test: take $h_{1} N, h_{2} N \in S$. Then S must also contain

$$
\begin{equation*}
\left(h_{1} N\right)\left(h_{2} N\right)^{-1}=\left(h_{1} N\right)\left(h_{2}^{-1} N\right)=\left(h_{1} h_{2}^{-1}\right) N . \tag{1}
\end{equation*}
$$

That is, $h_{1} h_{2}^{-1} \in H$, which means that H is a subgroup.
Conversely, suppose that $N \leq H \leq G$. The one-step subgroup test shows that $H / N \leq G / N$; see Eq. (1).

The other parts are straightforward and will be left as exercises.

The fraction theorem: quotients of quotients

The correspondence theorem characterizes the subgroup structure of the quotient G / N.
Every subgroup of G / N is of the form H / N, where $N \leq H \leq G$.
Moreover, if $H \unlhd G$, then $H / N \unlhd G / N$. In this case, we can ask:
What is the quotient group $(G / N) /(H / N)$ isomorphic to?

Fraction theorem

Given a chain $N \leq H \leq G$ of normal subgroups of G,

$$
(G / N) /(H / N) \cong G / H
$$

The fraction theorem: quotients of quotients

Let's continue our example of the semiabelian group $G=\mathrm{SA}_{8}=\langle r, s\rangle$.

$N \leq H \leq G$

$G / N=\langle r N, s N\rangle \cong C_{4} \times C_{2}$
$H / N=\left\langle r^{2} N\right\rangle=\left\{N, r^{2} N\right\} \cong C_{2}$

$G / H=\langle r H, s H\rangle \cong V_{4}$
$(G / N) /(H / N) \cong G / H$

The fraction theorem: quotients of quotients

Fraction theorem

Given a chain $N \leq H \leq G$ of normal subgroups of G,

$$
(G / N) /(H / N) \cong G / H .
$$

Proof

This is tailor-made for the FHT. Define the map

$$
\phi: G / N \longrightarrow G / H, \quad \phi: g N \longmapsto g H .
$$

- Show ϕ is well-defined: Suppose $g_{1} N=g_{2} N$. Then $g_{1}=g_{2} n$ for some $n \in N$. But $n \in H$ because $N \leq H$. Thus, $g_{1} H=g_{2} H$, i.e., $\phi\left(g_{1} N\right)=\phi\left(g_{2} N\right)$.
- ϕ is clearly onto and a homomorphism.
- Apply the FHT:

$$
\begin{aligned}
\operatorname{Ker}(\phi) & =\{g N \in G / N \mid \phi(g N)=H\} \\
& =\{g N \in G / N \mid g H=H\} \\
& =\{g N \in G / N \mid g \in H\}=H / N
\end{aligned}
$$

By the FHT, $(G / N) / \operatorname{Ker}(\phi)=(G / N) /(H / N) \cong \operatorname{Im}(\phi)=G / H$.

The fraction theorem: quotients of quotients

For another visualization, consider $G=\mathbb{Z}_{6} \times \mathbb{Z}_{4}$ and write elements as strings.
Consider the subgroups $N=\langle 30,02\rangle \cong V_{4}$ and $H=\langle 30,01\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
Notice that $N \leq H \leq G$, and $H=N \cup(01+N)$, and

$$
\begin{aligned}
G / N & =\{N, 01+N, 10+N, 11+N, 20+N, 21+N\}, \quad H / N=\{N, 01+N\} \\
G / H & =\{N \cup(01+N),(10+N) \cup(11+N),(20+N) \cup(21+N)\} \\
(G / N) /(H / N) & =\{\{N, 01+N\},\{10+N, 11+N\},\{20+N, 21+N\}\} .
\end{aligned}
$$

$N \leq H \leq G$

G/N consists of 6 cosets $H / N=\{N, 01+N\}$

G/H consists of 3 cosets $(G / N) /(H / N) \cong G / H$

The diamond theorem: quotients of products by factors

Diamond theorem

Suppose $A, B \leq G$, and that A normalizes B. Then
(i) $A \cap B \unlhd A$ and $B \unlhd A B$.
(ii) The following quotient groups are isomorphic:

$$
A B / B \cong A /(A \cap B)
$$

Proof (sketch)

Define the following map

$$
\phi: A \longrightarrow A B / B, \quad \phi: a \longmapsto a B .
$$

If we can show:

1. ϕ is a homomorphism,
2. ϕ is surjective (onto),
3. $\operatorname{Ker}(\phi)=A \cap B$,
then the result will follow immediately from the FHT. The details are left as HW.

Corollary

Let $A, B \leq G$, with one of them normalizing the other. Then $|A B|=\frac{|A| \cdot|B|}{|A \cap B|}$.

The diamond theorem: quotients of products by factors
Let $G=\mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and consider subgroups $A=\langle(0,1),(3,0)\rangle$, and $B=\langle(2,0)\rangle$.
Then $G=A B$, and $A \cap B=\langle(0,0)\rangle$.
Let's interpret the diamond theorem $A B / B \cong A / A \cap B$ in terms of the subgroup lattice.

The fact that the subgroup lattice of V_{4} is diamond shaped is coincidental.

The diamond theorem illustrated by a "pizza diagram"

The following analogy is due to Douglas Hofstadter:

$$
\begin{aligned}
& A B=\text { large pizza } \\
& A=\text { small pizza } \\
& B=\text { large pizza slice } \\
& A \cap B=\text { small pizza slice } \\
& A B / B=\{\text { large pizza slices }\} \\
& A /(A \cap B)=\{\text { small pizza slices }\} \\
& \text { Diamond theorem: } A B / B \cong A /(A \cap B)
\end{aligned}
$$

The diamond theorem: quotients of products by factors

Proposition

Suppose H is a subgroup of S_{n} that is not contained in A_{n}. Then exactly half of the permutations in H are even.

Proof

It suffices to show that $\left[H: H \cap A_{n}\right]=2$, or equivalently, that $H /\left(H \cap A_{n}\right) \cong C_{2}$.
Since $H \not \leq A_{n}$, the product $H A_{n}$ must be strictly larger, and so $H A_{n}=S_{n}$.
By the diamond theorem,

$$
H /\left(H \cap A_{n}\right)=H A_{n} / A_{n}=S_{n} / A_{n} \cong C_{2} .
$$

A generalization of the FHT

Theorem (exercise)

Every homomorphism $\phi: G \rightarrow H$ can be factored as a quotient and embedding:

A generalization of the FHT

The "subgroup" and "quotient" operations commute

Key idea

The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.

$$
\text { subgroup } H \cong Q_{8}
$$

"quotient of the subgroup"

The "subgroup" and "quotient" operations commute

Key idea

The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.

$$
\mathrm{V}_{4} \cong \mathrm{H} / \mathrm{N} \leq \mathrm{G} / \mathrm{N}
$$

"subgroup of the quotient"

Commutators

We contructed $\mathbb{Z}_{12} \cong \mathbb{Z} /\langle 12\rangle$ by "forcing" multiples of 12 to be zero (kernel of a quotient). A commutator is an element of the form $a b a^{-1} b^{-1}$.

$$
a b \neq b a
$$

Definition

The commutator subgroup of G is

$$
G^{\prime}:=\left\langle a b a^{-1} b^{-1} \mid a, b \in G\right\rangle .
$$

Do you see why $G^{\prime} \unlhd G$? [Hint: Consider the product $g c g^{-1}$ and c^{-1}.]

Definition

The abelianization of G is the quotient group G / G^{\prime}.

- G^{\prime} is the smallest normal subgroup N of G such that G / N is abelian.

■ G / G^{\prime} is the largest abelian quotient of G.

Some examples of abelianizations

By the isomorphism theorems, we can usually identitfy the commutator subgroup G and abelianation by inspection, from the subgroup lattice.

Automorphisms

An automorphism of G is a homomorphism $\phi: G \rightarrow G$.
The set of automorphisms of G defines the automorphism group of G, denoted Aut (G).

Proposition

The automorphism group of \mathbb{Z}_{n} is $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)=\left\{\sigma_{a} \mid a \in U_{n}\right\} \cong U_{n}$, where

$$
\sigma_{a}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}, \quad \sigma_{a}(1)=a
$$

$\mathrm{U}_{7}=\langle 3\rangle \cong \mathrm{C}_{6}$						
	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

$\operatorname{Aut}\left(\mathbf{C}_{7}\right)=\left\langle\sigma_{3}\right\rangle \cong \mathbf{U}_{7}$						
	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
σ_{1}	σ_{1}	σ_{2}	σ_{3}	σ_{4}	σ_{5}	σ_{6}
σ_{2}	σ_{2}	σ_{4}	σ_{6}	σ_{1}	σ_{3}	σ_{5}
σ_{3}	σ_{3}	σ_{6}	σ_{2}	σ_{5}	σ_{1}	σ_{4}
σ_{4}	σ_{4}	σ_{1}	σ_{5}	σ_{2}	σ_{6}	σ_{3}
σ_{5}	σ_{5}	σ_{3}	σ_{1}	σ_{6}	σ_{4}	σ_{2}
σ_{6}	σ_{6}	σ_{5}	σ_{4}	σ_{3}	σ_{2}	σ_{1}

An example: the automorphism group of C_{7}

Automorphisms of noncyclic groups

Key idea

Think of an automorphism as a "structure-preserving" rewiring of the Cayley graph.

Cayley graph of C_{4}

edges rewired

nodes relabeled

not an autom.

Examples

1. Every permutation of $\{h, v, r\}$ defines an automorphism, so $\operatorname{Aut}\left(V_{4}\right) \cong S_{3}$.
2. Every $\phi \in \operatorname{Aut}\left(D_{3}\right)$ is determined by $\phi(r)$ and $\phi(f)$. Since they preserve order

$$
\phi(1)=1, \quad \phi(r)=\underbrace{r \text { or } r^{2}}_{2 \text { choices }}, \quad \phi(f)=\underbrace{f, r f, \text { or } r^{2} f}_{3 \text { choices }}
$$

Thus, $\left|\operatorname{Aut}\left(D_{3}\right)\right| \leq 6$. The following are noncommuting automorphisms:

$$
\left\{\begin{array} { l }
{ \alpha (r) = r } \\
{ \alpha (f) = r f }
\end{array} \quad \left\{\begin{array}{l}
\beta(r)=r^{2} \\
\beta(f)=f
\end{array}\right.\right.
$$

Automorphisms of $V_{4}=\langle h, v\rangle$

The following permutations are both automorphisms:
$\alpha: r^{n}$ and $\beta: n^{n}$

$$
\begin{gathered}
h \stackrel{\beta}{\longmapsto} v \\
v \longmapsto h \\
h v \longmapsto h v
\end{gathered}
$$

$$
\begin{gathered}
h \stackrel{\alpha \beta}{\longmapsto} h \\
v \longmapsto h v \\
h v \longmapsto v
\end{gathered}
$$

$$
\begin{gathered}
h \stackrel{\alpha^{2}}{\longmapsto} h v \\
v \longmapsto h \\
h v \longmapsto v
\end{gathered}
$$

$$
\begin{gathered}
h \stackrel{\alpha^{2} \beta}{\longmapsto} h v \\
v \longmapsto v \\
h v \longmapsto h
\end{gathered}
$$

Automorphisms of $V_{4}=\langle h, v\rangle$

Here is the Cayley table and Cayley graph of $\operatorname{Aut}\left(V_{4}\right)=\langle\alpha, \beta\rangle \cong S_{3} \cong D_{3}$.

	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
$i d$	$i d$	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	$i d$	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	$i d$	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	$i d$	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

Recall that α and β can be thought of as the permutations $h v$

Automorphisms of D_{3}

$$
\alpha: r r^{2} f f_{r}^{r} r^{2} f \quad \text { and } \quad \beta: r_{r^{2}} f \text { rf } r^{2} f
$$

Automorphisms of D_{3}

Here is the Cayley table and Cayley graph of $\operatorname{Aut}\left(D_{3}\right)=\langle\alpha, \beta\rangle$.

	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
$i d$	$i d$	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	$i d$	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	$i d$	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	$i d$	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

$$
\alpha: r r^{2} \text { and }
$$

$$
\beta: r_{r}^{r} r_{r}^{2} \text { rf } r^{2} f
$$

Automorphisms of D_{3}

Here is the Cayley table and Cayley graph of $\operatorname{Aut}\left(D_{3}\right)=\langle\alpha, \beta\rangle$.

	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
id	id	α	α^{2}	β	$\alpha \beta$	$\alpha^{2} \beta$
α	α	α^{2}	$i d$	$\alpha \beta$	$\alpha^{2} \beta$	β
α^{2}	α^{2}	$i d$	α	$\alpha^{2} \beta$	β	$\alpha \beta$
β	β	$\alpha^{2} \beta$	$\alpha \beta$	$i d$	α^{2}	α
$\alpha \beta$	$\alpha \beta$	β	$\alpha^{2} \beta$	α	$i d$	α^{2}
$\alpha^{2} \beta$	$\alpha^{2} \beta$	$\alpha \beta$	β	α^{2}	α	$i d$

Semidirect products

Consider the following "inflation" construction of the Cayley graph of a direct product:

Reversing the red arrows in the bottom "balloon" would result in a Cayley graph for D_{4}.
We say that D_{4} is the semidirect product of C_{4} and C_{2}, written $D_{4} \cong C_{4} \rtimes C_{2}$.

Key point

For groups A, B we need a "labeling map" homomorphism

$$
\theta: B \longrightarrow \operatorname{Aut}(A)
$$

where $\theta(b)$ describes: " which rewiring of A we stick into balloon $b \in B$ ".

Semidirect products

Let's construct all semidirect products of $A=C_{5}=\langle a\rangle$ with $B=C_{4}=\langle b\rangle$.

starting graph

$a^{1} \mapsto\left(a^{1}\right)^{2}=a^{2}$

$a^{2} \mapsto\left(a^{2}\right)^{2}=a^{4}$

$a^{4} \mapsto\left(a^{4}\right)^{2}=a^{3}$
$\operatorname{Aut}\left(C_{5}\right) \cong U(4) \cong C_{4}=\langle\varphi\rangle$ is generated by the "doubling map".

Each "labeling map"

$$
\theta_{i}: C_{4} \longrightarrow \operatorname{Aut}\left(C_{5}\right)
$$

each is determined by $\theta_{i}(b)=\varphi^{i}$, for $i=0,1,2,3$.

An example: the direct product of C_{5} and C_{4}
Let's construct the "trivial" semidirect product, $C_{5} \rtimes_{\theta_{0}} C_{4}=C_{5} \times C_{4}$:

"labeling map"

$$
\begin{aligned}
& C_{4} \xrightarrow{\theta_{0}} \operatorname{Aut}\left(C_{5}\right) \\
& b^{k} \longmapsto \varphi^{0}
\end{aligned}
$$

Stick in non-rewired copies of A, and then reconnect the B-arrows.

An example: the $1^{\text {st }}$ semidirect product of C_{5} and C_{4}
Let's construct the semidirect product $C_{5} \rtimes_{\theta_{1}} C_{4}$:

"labeling map"
$C_{4} \xrightarrow{\theta_{1}} \operatorname{Aut}\left(C_{5}\right)$
$b^{k} \longmapsto \varphi^{k}$

Stick in θ_{1}-rewired copies of A, and then reconnect the B-arrows.

An example: the $2^{\text {nd }}$ semidirect product of C_{5} and C_{4}
Let's now construct a different semidirect product, $C_{5} \rtimes_{\theta_{2}} C_{4}$:

"labeling map"

$$
\begin{aligned}
& C_{4} \xrightarrow{\theta_{2}} \operatorname{Aut}\left(C_{5}\right) \\
& b^{k} \longmapsto \varphi^{2 k}
\end{aligned}
$$

Stick in θ_{2}-rewired copies of A, and then reconnect the B-arrows.

Rewiring edges vs. re-labeling nodes

An example: the $3^{\text {rd }}$ semidirect product of C_{5} and C_{4}
Let's construct the last semidirect product $C_{5} \rtimes_{\theta_{3}} C_{4}$:

Sticking in θ_{3}-rewired copies yields the same Cayley diagram as $C_{5} \rtimes_{\theta_{1}} C_{4}$:

Semidirect products of C_{8} and C_{2}

There are four automorphisms of $C_{8}=\langle r\rangle$:

All three non-trivial rewirings have order 2 , so $\operatorname{Aut}\left(C_{8}\right)=U(8) \cong V_{4}$:

$$
r \xrightarrow{\sigma} r^{3} \xrightarrow{\sigma}\left(r^{3}\right)^{3}=r^{9}=r, \quad r \xrightarrow{\mu} r^{5} \xrightarrow{\mu}\left(r^{5}\right)^{5}=r^{25}=r, \quad r \xrightarrow{\delta} r^{7} \xrightarrow{\delta}\left(r^{7}\right)^{7}=r^{49}=r .
$$

There are four labeling maps $\theta_{k}: C_{2} \longrightarrow \operatorname{Aut}\left(C_{8}\right) \cong V_{4}$:

$s \stackrel{\theta_{3}}{\longmapsto} \sigma$
$s \stackrel{\theta_{5}}{\longmapsto} \mu$
$s \stackrel{\theta_{7}}{\longmapsto} \delta$

The four semidirect products $C_{8} \rtimes_{i} C_{2}$

Semidirect products of $C_{2^{m}}$ and C_{2}

Lemma

For any $n \geq 3$, the equation $x^{2} \equiv 1\left(\bmod 2^{n}\right)$ has four solutions: ± 1 and $2^{n-1} \pm 1$.

There are four "labeling maps"

$$
\theta_{i}: C_{2} \longrightarrow \operatorname{Aut}\left(C_{2^{m}}\right) \cong U\left(2^{m}\right)=\langle\varphi\rangle, \quad \theta_{i}(b)=\varphi^{i}
$$

one for each i of order 1 or 2 in $U\left(2^{m}\right)$.

Corollary

For each $n=2^{m}$, there are four distinct semidirect products of C_{n} with C_{2} :

1. $C_{n} \rtimes_{\theta_{1}} C_{2} \cong C_{n} \times C_{2}$,
2. $C_{n} \rtimes_{\theta_{\sigma}} C_{2} \cong \mathrm{SD}_{n}$,
3. $C_{n} \rtimes_{\theta_{\mu}} C_{2} \cong \mathrm{SA}_{n}$,
4. $C_{n} \rtimes_{\theta_{\delta}} C_{2} \cong D_{n}$,

The labeling maps define the automorphisms:

$$
r \stackrel{\theta_{1}}{\longmapsto} r, \quad r \stackrel{\theta_{\sigma}}{\longmapsto} r^{2^{m-1}-1}, \quad r \stackrel{\theta_{\mu}}{\longmapsto} r^{2^{m-1}+1}, \quad r \stackrel{\theta_{\delta}}{\longmapsto} r^{-1} .
$$

The smallest nonabelian group of odd order: $C_{7} \rtimes_{\theta} C_{3}$
Recall that $\operatorname{Aut}\left(C_{7}\right)=U(7) \cong C_{6}=\langle\varphi\rangle$.

$$
\begin{aligned}
& C_{3} \xrightarrow{\theta} \operatorname{Aut}\left(C_{7}\right) \\
& s^{k} \longmapsto \varphi^{2 k}
\end{aligned}
$$

The construction of $V_{4} \rtimes C_{2}$

There are four labeling maps: $\theta_{i}: C_{2} \longrightarrow \operatorname{Aut}\left(V_{4}\right) \cong D_{3}$:

The nontrivial ones define isomorphic semidirect products, $V_{4} \rtimes C_{2}$:

Start with a copy of $B=C_{2}$

Inflate each node, insert rewired versions of $A=V_{4}$, and connect corresponding nodes

rearrange the Cayley graph What familiar group is $V_{4} \rtimes C_{2}$?

The inner automorphism group

Definition

An inner automorphism of G is an automorphism $\varphi_{x} \in \operatorname{Aut}(G)$ defined by

$$
\varphi_{x}(g):=x^{-1} g x, \quad \text { for some } x \in G .
$$

The inner automorphisms of G form a group, denoted $\operatorname{Inn}(G)$. (Exercise)

There are four inner automorphisms of D_{4} :

$$
\begin{aligned}
& \varphi_{f}=\varphi_{r^{2} f}
\end{aligned}
$$

Since $\varphi_{x}^{2}=I d$ for all of these, $\operatorname{lnn}\left(D_{4}\right)=\left\langle\varphi_{r}, \varphi_{f}\right\rangle \cong V_{4}$.
Are there any other automorphisms of D_{4} ?

The inner automorphism group

Proposition (exercise)

$\operatorname{lnn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.

Remarks

- Many books define $\varphi_{x}(g)=x g x^{-1}$. Our choice is so $\varphi_{x y}=\varphi_{x} \varphi_{y}$ (reading L-to-R).
- If $z \in Z(G)$, then $\varphi_{z} \in \operatorname{lnn}(G)$ is trivial.
- If $x=y z$ for some $Z(G)$, then $\varphi_{x}=\varphi_{y}$ in $\operatorname{Inn}(G)$:

$$
\varphi_{x}(g)=x^{-1} g x=(y z)^{-1} g(y z)=z^{-1}\left(y^{-1} g y\right) z=y^{-1} g y=\varphi_{y}(g) .
$$

That is, if x and y are in the same coset of $Z(G)$, then $\varphi_{x}=\varphi_{y}$. (And conversely.)

	z	rZ	$f Z$	rfZ
	1	r	f	rf
	r^{2}	r^{3}	$r^{2} f$	$r^{3} f$
cl(1)	1	r	f	rf
$\mathrm{cl}\left(r^{2}\right)$	r^{2}	r^{3}	$r^{2} f$	$r^{3} f$
$\mathrm{cl}(r) \mathrm{cl}(f) \mathrm{cl}(r f)$				

cosets of $Z\left(D_{4}\right)$ are in bijection with inner automorphisms of D_{4}
inner automorphisms of D_{4} permute elements within conjugacy classes

Chapter 4: Maps between groups

The inner automorphism group

Key point

Two elements $x, y \in G$ are in the same coset of $Z(G)$ if and only if $\varphi_{x}=\varphi_{y}$ in $\operatorname{lnn}(G)$.

Proposition

In any group G, we have $G / Z(G) \cong \operatorname{lnn}(G)$.

Proof

Consider the map

$$
f: G \longrightarrow \operatorname{lnn}(G), \quad x \longmapsto \varphi_{x}
$$

It is straightfoward to check this this is (i) a homomorphism, (ii) onto, and (iii) that $\operatorname{Ker}(f)=Z(G)$.

The result is now immediate from the FHT.
We just saw that $\operatorname{Aut}\left(D_{3}\right) \cong D_{3}$, and we know that $Z\left(D_{3}\right)=\langle 1\rangle$. Therefore,

$$
\operatorname{lnn}\left(D_{3}\right) \cong D_{3} / Z\left(D_{3}\right) \cong D_{3} \cong \operatorname{Aut}\left(D_{3}\right)
$$

i.e., every automorphism is inner.

Inner automorphisms of D_{3}
Let's label each $\phi \in \operatorname{Aut}\left(D_{3}\right)$ with the corresponding inner automorphism.

Automorphisms of D_{4}

Every automorphism of $D_{4}=\langle r, f\rangle$ is determined by where it sends the generators:

$$
\phi(r)=\underbrace{r \text { or } r^{3}}_{2 \text { choices }}, \quad \phi(f)=\underbrace{f, r f, r^{2} f, r^{3} f, \text { or } r^{2}}_{5 \text { choices }} .
$$

Thus $\left|\operatorname{Aut}\left(D_{4}\right)\right| \leq 10$. But $\operatorname{Inn}\left(D_{4}\right) \leq \operatorname{Aut}\left(D_{4}\right)$, forces $\left|\operatorname{Aut}\left(D_{4}\right)\right|=4$ or 8 . Moreover,

$$
\omega: D_{4} \longrightarrow D_{4}, \quad \omega(r)=r, \quad \omega(f)=r f
$$

is an (outer) automorphism, which swaps the "two types" of reflections of the square.

$$
\varphi_{f} \omega
$$

$$
\operatorname{Aut}\left(D_{4}\right)=\left\{I d, \varphi_{r}, \varphi_{f}, \varphi_{r f}, \omega, \varphi_{r} \omega, \varphi_{f} \omega, \varphi_{r f} \omega\right\}=\operatorname{Inn}\left(D_{4}\right) \cup \operatorname{Inn}\left(D_{4}\right) \omega \cong D_{4} .
$$

The full automorphism group of D_{4}

$$
\begin{aligned}
& \operatorname{Inn}\left(D_{4}\right)=\left\langle\varphi_{r}, \varphi_{f}\right\rangle
\end{aligned}
$$

$\operatorname{Inn}\left(D_{4}\right) \omega$

ω

The outer automorphism group

Definition

An outer automorphism of G is any automorphism that is not inner.
The outer automorphism group of G is the quotient $\operatorname{Out}(G):=\operatorname{Aut}(G) / \operatorname{Inn}(G)$.

$\operatorname{Aut}\left(D_{4}\right) \cong \operatorname{Inn}\left(D_{4}\right) \rtimes \operatorname{Out}\left(D_{4}\right)$

Note that there are four outer automorphisms, but $\left|\operatorname{Out}\left(D_{4}\right)\right|=2$.
We have seen: $\operatorname{Out}\left(V_{4}\right) \cong D_{3}, \operatorname{Out}\left(D_{3}\right) \cong\{\operatorname{Id}\}, \quad \operatorname{Out}\left(D_{4}\right) \cong C_{2}, \quad \operatorname{Out}\left(Q_{8}\right) \cong S_{3}$.

Class automorphisms

Proposition (exercise)

Automorphisms permute conjugacy classes. That is, $g, h \in G$ are conjugate if and only if $\phi(g)$ and $\phi(h)$ are conjugate.

It is natural to ask if an automorphism being inner is equivalent to being the identity permutation on conjugacy classes.

In other words:

$$
\text { "if } \phi \in \operatorname{Aut}(G) \text { sends every element to a conjugate, must } \phi \in \operatorname{Inn}(G) \text { ?' }
$$

The answer is "no". Burnside found examples of groups of order at least 729 that admit such an automorphism.

Definition

A class automorphism is an automorphism that sends every element to another in its conjugacy class.

In 1947, G.E. Wall found a group of order 32 with a class automorphism that is outer.

Semidirect products, algebraically

Thus far, we've see how to construct $A \rtimes_{\theta} B$ with our "inflation method."
Given A (for "automorphism") and B (for "balloon"), we label each inflated node $b \in B$ with $\phi \in \operatorname{Aut}(A)$ via some labeling map

$$
\theta: B \longrightarrow \operatorname{Aut}(A)
$$

Of course can all be defined algebraically. Denote multiplication in $A \times B$ by

$$
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)
$$

Definition

The (external) semidirect product $A \rtimes_{\theta} B$ of A and B, with respect to the homomorphism

$$
\theta: B \longrightarrow \operatorname{Aut}(A)
$$

is on the underlying set $A \times B$, where the binary operation $*$ is defined as

$$
\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right):=\left(a_{1}, b_{1}\right) \cdot\left(\theta\left(b_{1}\right) a_{2}, b_{2}\right)=\left(a_{1} \theta\left(b_{1}\right) a_{2}, b_{1} b_{2}\right) .
$$

The isomorphic group on $B \times A$ by swapping the coordinates above is written $B \ltimes_{\theta} A$.

An example: the direct product $C_{5} \times C_{4}$

An example: the semidirect product $C_{5} \rtimes_{\theta} C_{4}$

Semidirect products, algebraically

Recall how to multipy in $A \rtimes_{\theta} B$:

$$
\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right):=\left(a_{1}, b_{1}\right) \cdot\left(\theta\left(b_{1}\right) a_{2}, b_{2}\right)=\left(a_{1} \theta\left(b_{1}\right) a_{2}, b_{1} b_{2}\right) .
$$

Lemma

The subgroup $A \times\{1\}$ is normal in $A \rtimes_{\theta} B$.

Proof

Let's conjugate an arbitrary element $(g, 1) \in A \times\{1\}$ by an element $(a, b) \in A \rtimes_{\theta} B$.

$$
(a, b)(x, 1)(a, b)^{-1}=(a \theta(b) g, b)\left(a^{-1}, b^{-1}\right)=(\underbrace{a \theta(b) g \theta(b) a^{-1}}_{\in A}, 1) \in A \times\{1\} .
$$

Not all books use the same notation for semidirect product. Ours is motivated by:

- In $A \times B$, both factors are normal (technically, $A \times\{1\}$ and $\{1\} \times B$).
- In $A \rtimes B$, the group on the "open" side of \rtimes is normal.

Internal products

Previously, we've looked at outer products: taking two unrelated groups and constructing a direct or semidirect product.

Now, we'll explore when a group $G=N H$ is isomorphic to a direct or semidirect product.
These are called internal products. Let's see two examples:

$C_{6}=N H \cong N \times H$

$\theta_{1}: r \mapsto \varphi$

$D_{3}=N H \cong N \rtimes_{\theta} H$

Questions

- Can we characterize when $N H \cong N \times H$ and/or $N H \cong N \rtimes_{\theta} H$?
- If $N H \cong N \rtimes_{\theta} H$, then what is the map $\theta: H \rightarrow \operatorname{Aut}(N)$?

Internal direct products

When $G=N H$ is isomorphic to $N \times H$, we have an isomorphism

$$
i: N \times H \longrightarrow N H, \quad i:(n, h) \longmapsto n h .
$$

Since $N \times\{1\}$ and $\{1\} \times H$ are normal in $N \times H$, the subgroups N and H are normal in $N H$.
Recall that earlier, we showed that

$$
|N H|=\frac{|N| \cdot|H|}{|N \cap H|}
$$

and so it follows that if $N H \cong N \times H$, then $N \cap H=\{e\}$.

Theorem

Let $N, H \leq G$. Then $G \cong N \times H$ iff the following conditions hold:
(i) N and H are normal in G
(ii) $N \cap H=\{e\}$
(iii) $G=N H$.

Remark

This has a very nice interpretation in terms of subgroup lattices! Groups for which (ii) and (iii) hold are called lattice complements.

Internal semidirect products

When $G=N H$ is isomorphic to $N \rtimes_{\theta} H$, we have an isomorphism

$$
i: N \rtimes_{\theta} H \longrightarrow N H, \quad i:(n, h) \longmapsto n h .
$$

This time, only $N \times\{1\}$ needs to be normal in $N \times H$, and so $N \unlhd N H$.
As before, from

$$
|N H|=\frac{|N| \cdot|H|}{|N \cap H|}
$$

we conclude that if $N H \cong N \rtimes_{\theta} H$, then $N \cap H=\{e\}$.

Theorem

Let $N, H \leq G$. Then $G \cong N \rtimes H$ iff the following conditions hold:
(i) N is normal in G
(ii) $N \cap H=\{e\}$
(iii) $G=N H$,
and the homomorphism θ sends h to the inner automorphism $\varphi_{h^{-1}}$:

$$
\theta: H \longrightarrow \operatorname{Aut}(N), \quad \theta: h \longmapsto\left(n \stackrel{\varphi_{h^{-1}}}{\longrightarrow} h^{-1} n h\right) .
$$

Let's do several examples for intution, before proving this.

Examples of internal semidirect products

Observations

- The group SD_{8} decomposes as a semidirect product several ways:

$$
N=\langle r\rangle \cong C_{8}, \quad H=\langle s\rangle \cong C_{2}, \quad \mathrm{SD}_{8}=N H \cong C_{8} \rtimes_{\theta_{3}} C_{2} .
$$

or alternatively,

$$
N=\left\langle r^{2}, r s\right\rangle \cong Q_{8}, \quad H=\langle s\rangle \cong C_{2}, \quad \mathrm{SD}_{8}=N H \cong Q_{8} \rtimes_{\theta^{\prime}} C_{2}
$$

- The group Q_{16} does not decompose as a semidirect product!

Semidihedral groups as semidirect products

Generalized quaternion groups

Recall that a generalized quaternion group is a dicyclic group whose order is a power of 2 .
It's not hard to see that $r^{8}=s^{2}=-1$ is contained in every cyclic subgroup.

Therefore, $Q_{2^{n}} \nsubseteq N \rtimes H$ for any of its nontrivial subgroups.

Internal semidirect products and inner automorphisms

Theorem

Let $N, H \leq G$. Then $G \cong N \rtimes H$ iff the following conditions hold:
(i) N is normal in G
(ii) $N \cap H=\{e\}$
(iii) $G=N H$,
and the homomorphism θ sends h to the inner automorphism φ_{h} :

$$
\theta: H \longrightarrow \operatorname{Aut}(N), \quad \theta: h \longmapsto\left(n \stackrel{\varphi_{h-1}}{\longmapsto} h^{-1} n h\right) .
$$

Proof

We only need to establish that θ sends $h \mapsto \varphi_{h^{-1}}$.
Take $n_{1} h_{1}$ and $n_{2} h_{2}$ in NH. Their product is

$$
\left(n_{1} h_{1}\right) *\left(n_{2} h_{2}\right)=n_{1} \theta\left(h_{1}\right) n_{2} h_{1} h_{2}
$$

for some $\theta\left(h_{1}\right) \in \operatorname{Aut}(N)$.
To see why $\theta\left(h_{1}\right)$ is the inner automorphism $\varphi_{h_{1}}$, note that

$$
n_{1} \varphi_{h_{1}^{-1}}\left(n_{2}\right) h_{1} h_{2}=n_{1}\left(h_{1}^{-1} n_{2} h_{1}\right) h_{1} h_{2}=\left(n_{1} h_{1}\right) *\left(n_{2} h_{2}\right)
$$

Internal direct and semidirect products

How many ways does D_{6} decompose as an direct or semidirect product of its subgroups?

Central products

The following 3 conditions characterize when $G=N H \cong N \times H$.

1. H and N are normal,
2. $G=\langle H, N\rangle$,
3. $H \cap N=\langle 1\rangle$.

If weaken the first to only N being normal, we get $G=N H \cong N \rtimes H$.
Alernatively, we can keep the first two but weaken the third.

Definition

Suppose H and N are subgroups of G satisfying:

1. H and N are normal,
2. $G=\langle H, N\rangle$,
3. $H \cap N \leq Z(G)$.

The G is an internal central product of H and K, denoted $G \cong H \circ K$.

We can also define an external central product of A and B, but we won't do that here.

Central products

The diquaternion group DQ_{8} is a central product two nontrivial ways:
■ $\mathrm{DQ}_{8} \cong C_{4} \circ Q_{8}$

- $\mathrm{DQ}_{8} \cong C_{4} \circ D_{4}$.

Recall that $Z\left(\mathrm{DQ}_{8}\right)=N \cong C_{4}$.

