# Chapter 6: Extensions \& universal constructions 

Matthew Macauley<br>Department of Mathematical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 8510, Abstract Algebra

## Group extensions

Every normal subgroup $N \unlhd G$ canonically defines two sublattices.
■ "everything above": the quotient $Q:=G / N$
■ "everything below": the subgroup $N \unlhd G$.
We say that:
" $G$ is an extension of $Q$, by $N$ ".
Here are four extensions of $V_{4}$ by $C_{2}$.


This can be encoded by a sequence

$$
N \stackrel{\iota}{\longrightarrow} G \xrightarrow{\pi} Q
$$

where $\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$. We say that this sequence is exact at $G$.

## Extensions and short exact sesquences

If we write

$$
1 \longrightarrow N \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1
$$

and specifiy that the sequence is exact at $N, G$, and $Q$, then

- exactness at $N$ means $\iota$ is injective,
- exactness at $G$ means $\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$,
- exactness at $Q$ means $\pi$ is surjective.

We call this a short exact sequence.


## More on exact sequences

Exact sequences arise in algebraic topology, homological algebra, differential geometry, etc.
The "curl of a conservative vector field is 0 " can be viewed a short exact sequence:


Here is an exact sequence of length 7 :


## Extensions

Finding all extensions of a group $Q$ by $N$ amounts to the following.

## The "extension problem"

Find all possibilities for the "middle term" $G$ in a short exact sequence, given $N$ and $Q$.

We define equivalence of extensions via commutative diagrams related by automorphisms.


Do you see why these three extensions of $V_{4}$ by $C_{2}$ do not differ by an automorphism?


## Extension equivalence

There are three nonequivalent extensions of $V_{4}$ by $C_{2}$ that give $D_{4}$ :

$$
1 \longrightarrow C_{2} \xrightarrow{\iota} D_{4} \xrightarrow{\pi} V_{4} \longrightarrow 1
$$



Semidirect products and extensions
A semidirect product $N \rtimes H$ is an extension of $H$ by $N$.

$$
1 \longrightarrow N \xrightarrow{\iota} N \rtimes_{\theta} H \xrightarrow{\pi} H \longrightarrow 1 \text {. }
$$

In the subgroup lattice, we can see
■ $N \leq G$ at the bottom,

- $H \leq G$ at the bottom,
- $Q=G / N \cong H$ at the top.


Do you see a canonical injection from $Q \cong G / N \cong H$ "down to" $H \leq G$ ?

## Split exact sequences

## Definition

A short exact sequence splits if there is a backwards map $\beta: H \rightarrow G$ for which $\pi \circ \beta=\operatorname{ld}_{H}$ :


## Split exact sequences and semidirect products

## Theorem

A short exact sequence $1 \longrightarrow N \xrightarrow{\iota} G \underset{K_{\beta}}{\pi} H \longrightarrow 1$ splits if and only if $G \cong N \rtimes_{\theta} H$.

## Proof

$" \Leftarrow "$ We've already seen this.
" $\Rightarrow$ ": Suppose we have a split exact sequence, and $\beta: H \rightarrow G$ satisfies $\pi \circ \beta=\operatorname{ld}_{H}$.
It suffices to show that $\iota(N) \cong N$ and $\beta(H) \cong H$ are lattice complements.

- Generate $G$ : Take $g \in G$, we will show that $g=n h \in \underbrace{\iota(N)}_{\cong N} \underbrace{\beta(H)}_{\cong H}$.

Let $h=\beta(\pi(g)) \in \beta(H)$.
It suffices to show that $n=g h^{-1}$ is in $\iota(N)=\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$. By exactness, $\pi(\iota(N))=1_{H}$, and with $\pi \circ \beta=\operatorname{Id}_{H}$, we get

$$
\pi(n)=\pi\left(g h^{-1}\right)=\pi(g) \pi(h)^{-1}=\pi(g) \cdot \pi(\beta(\pi(g)))^{-1}=\pi(g) \cdot \pi(g)^{-1}=1_{H}
$$

hence $n \in \operatorname{Ker}(\pi)$.

## Split exact sequences and semidirect products

## Theorem

A short exact sequence $1 \longrightarrow N \xrightarrow{\iota} G \underset{\kappa_{\beta}}{\pi} H \longrightarrow 1$ splits if and only if $G \cong N \rtimes_{\theta} H$.

## Proof

$" \Leftarrow "$ We've already seen this.
" $\Rightarrow$ ": Suppose we have a split exact sequence, and $\beta: H \rightarrow G$ satisfies $\pi \circ \beta=\mathbf{I d}_{H}$. It suffices to show that $\iota(N) \cong N$ and $\beta(H) \cong H$ are lattice complements.

- Trivial intersection: Suppose $g \in \iota(N) \cap \beta(H)$, and write $g=\beta(h)$.

Since $g \in \iota(N)=\operatorname{Im}(\iota)=\operatorname{Ker}(\pi)$,

$$
1_{H}=\pi(g)=\pi(\beta(h))=(\pi \circ \beta)(h)=\operatorname{Id}_{H}(h)=h .
$$

Therefore, $g=\beta(h)=\beta\left(1_{H}\right)=1_{G}$, and hence $\iota(N) \cap \beta(H)=\left\langle 1_{G}\right\rangle$.

## Split exact sequences and direct products

If $G \cong N \times H$, then $G$ is an extension of $N$ by $H$, and vice-versa.

This gives a certain "duality" to the subgroup lattices. Here is $D_{6} \cong D_{3} \times C_{2} \cong C_{2} \times D_{3}$.


## Split exact sequences and direct products

Another way to capture this duality is to distinguish between "right split" and "left split."

## Definition

A short exact sequence is left split if there is a map $\beta: H \rightarrow G$ for which $\alpha \circ \iota=\operatorname{ld}_{N}$ :

$$
1 \longrightarrow N \underset{r_{\ldots, \ldots}}{\stackrel{\iota}{\longrightarrow}} G \xrightarrow[K_{K}]{\pi} H \longrightarrow 1
$$



## Split exact sequences and direct products

## Proposition (HW)

- If a short exact sequence is left split, then it is right split.
"if it's a direct product, then it's a semidirect product"
■ If a short exact sequence is right split and $G$ is abelian, then it is left split.
"if an abelian group is a semidirect product, then it's a direct product"



## Split exact sequences and direct products

If $G \cong N \times H$, then $G$ is an extension of $N$ by $H$, and vice-versa.



This gives a certain "duality" to the subgroup lattices. The two abelian groups of order 12 break up as a direct product in three ways:


## Central and stem extensions

## Definition

An extension $1 \longrightarrow N \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1$ is

- abelian if $N$ is abelian,
- central if $\iota(N) \leq Z(G)$,
- a (central) stem extension if $\iota(N) \leq Z\left(G^{\prime}\right)$.

The group $G=C_{4} \rtimes C_{4}$ is a central (and hence abelian), nonsplit extension of $Q=Q_{8}$ by $N=C_{2}$.


## Types of groups extensions

If $G$ is a (non-split) extension of $Q$ by $N$, we write N.Q.
Here are the different types of extensions and how they are related.


In general, we are interested in understanding how groups can be "built with extensions," via simple groups.

## Preview

If $G$ can be broken up into

- abelian extensions, then it is solvable,
- central extensions, then it is nilpotent.


## Chopping off subgroup lattices

Going forward, we will iteratively be finding subgroups and quotients of a group $G$.

It will be convenient to use the following teminology:

"chopping off above $N=\left\langle r^{2}\right\rangle$ "

"chopping off below $N=\left\langle r^{2}\right\rangle$ "

## Climbing down subgroups lattices via "simple steps"

Every finite group $G$ has $\geq 1$ maximal normal subgroup: $N \unlhd G$ for which $G / N$ is simple.
Let $G_{0}=G$, and $G_{1} \unlhd G$ be any maximal normal subgroup.
Next, pick any maximal $G_{2} \unlhd G_{1}$. Note that $G_{2}$ need not be normal in $G$.
Iterate this process of taking "simple steps" down the lattice, until we reach the bottom.

## Definition

A composition series for $G$ is a "descending subnormal series"

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=\langle 1\rangle
$$

where each $G_{i} / G_{i+1}$ is simple. The composition factors are the quotient groups $G_{i} / G_{i+1}$.

Note that each $G_{i}$ is an extension of $G_{i} / G_{i+1}$ by $G_{i+1}$.

## Big idea

Breaking down a group into composition factors is like factoring a number into primes, or a molecule into atoms. We say:
"Every group can be constructed by 'simple extensions'"

## Composition series and simple extensions

Here is an example of a composition series: $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3} \unrhd G_{4}=1$.
These are all simple extensions. The composition factors are marked.


They will always be either cyclic or non-abelian simple (e.g., $A_{5}, \mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right), A_{6}, \ldots$ ).
Preview: A group is "solvable" if they're all cyclic.

Composition series and simple extensions
How many composition series do the following groups have? What are their factors?


Do you see why we need to work from "top to bottom" to find them?
The following result is analogous to how integers can be factored uniquely into primes.

## Jordan-Hölder theorem (upcoming)

Every composition series of a group has the same multiset of composition factors.

## Equivalence of composition series

Two composition series

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=1, \quad G=H_{0} \unrhd H_{1} \unrhd \cdots \unrhd H_{\ell}=1
$$

are equivalent if $\ell=m$, and they have the same composition factors up to re-ordering. Notice how all of the composition series of the following groups are equivalent:


This is guaranteed by the Jordan-Hölder theorem.

## Equivalence of composition series

## Jordan-Hölder theorem

Any two composition series for a finite group are equivalent.

## Proof

We proceed by induction (base case is trivial). Suppose we have two composition series:

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=1, \quad G=H_{0} \unrhd H_{1} \unrhd \cdots \unrhd H_{\ell}=1,
$$

and the result holds for all groups with a composition series of length $\leq m$.
If $G_{1}=H_{1}$, the result follows from the IHOP. So assume otherwise, and let $K_{2}=G_{1} \cap H_{1}$.
Take a composition series of $K_{2}$.
We now have 4 composition series of $G$.
Reading left-to-right (see lattice):

- The 1st \& 2nd, and 3rd \& 4th have the same factors by the IHOP.
- The 2 nd and 3 rd have the same factors by the diamond theorem.


The smallest nonsolvable (and smallest nonabelian simple) group


The second smallest nonabelian simple group ("group atom")


Note: There are 3 smaller nonsolvable nonsimple groups: $S_{5}, A_{5} \times C_{2}, \mathrm{SL}_{2}\left(\mathbb{Z}_{5}\right) \cong A_{5} . C_{2}$.

The third smallest nonabelian simple group ("group atom")


## Climbing down subgroups lattices via "abelian descents"

Suppose $G_{1} \unlhd G$ and $G / G_{1}$ is abelian. We'll call $G_{1}$, and the act of jumping from $G$ down to $G_{1}$, as an abelian descent.

Equivalently, $G$ is an abelian extension of $G / G_{1}$ by $G_{1}$.

## Proposition (exercise)

If $N \unlhd G$, then $G / N$ is abelian if and only if $G^{\prime} \leq N$.

In other words, the commutator subgroup $G^{\prime}$ is the maximal abelian descent from $G$.

## Definition

A group $G$ is solvable if can be constructed iteratively by abelian extensions: there exists

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{m}=\langle 1\rangle
$$

where each factor $G_{i} / G_{i+1}$ is abelian. (Or equivalently: cyclic.)

## Definition

The derived series of group $G$ is the series

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd G^{(2)} \unrhd G^{(3)} \unrhd \cdots, \quad \text { where } G^{(k+1)}=\left(G^{(k)}\right)^{\prime}
$$

## Solvability

The derived series of $G=\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ reaches the bottom in 3 steps.


We say that $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ is solvable, with derived length 3 .
By the correspondence theorem, we can refine the derived series to a composition series.

Solvability in terms of abelian extensions

## Key idea

A group is solvable if it can be constructed as a series of abelian extensions.

From top-to-bottom: $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd G_{3}=\langle 1\rangle$.


Solvability in terms of abelian extensions

## Key idea

A group is solvable if it can be constructed as a series of abelian extensions.

From bottom-to-top: $\langle 1\rangle=G_{3} \unlhd G_{2} \unlhd G_{1} \unlhd G_{0}=G$.


## Solvability in terms of composition series (simple extensions)

## Proposition

A finite group $G$ is solvable if and only if $G^{(m)}=\langle 1\rangle$ for some $m \in \mathbb{Z}$.

Intuitively: if (non-maximal) abelian descents reach the bottom, so will maximal abelian descents.

## Proof

" $\Rightarrow$ " is trivial. For " $\Leftarrow$ ", say $G$ has a subnormal series with $G_{m}=\langle 1\rangle$ and abelian factors.
We need to show $G^{(m)}=\langle 1\rangle$, but we'll prove a stronger statement:

$$
G^{(k)} \leq G_{k} \quad \text { for all } \quad k \in \mathbb{N} .
$$

We can do this by induction.
Base case: Since $G / G_{1}$ is abelian $G^{\prime} \leq G_{1}$.
Bonus base case: Since $G_{1} / G_{2}$ is abelian, $G_{2}$ must contain $\left(G_{1}\right)^{\prime}=G^{\prime \prime}$.
Suppose $G^{(k)} \leq G_{k}$ holds; then $G^{(k+1)} \leq G_{k}^{\prime}$.
Since $G_{k} / G_{k+1}$ is abelian, $G_{k+1}$ must contain $G_{k}^{\prime} \geq G^{(k+1)}$.

## Solvability and subgroups

Given subgroups $H$ and $K$ of $G$, define

$$
[H, K]=\langle[h, k] \mid h \in H, k \in K\rangle=\left\langle h k h^{-1} k^{-1} \mid h \in H, k \in K\right\rangle .
$$

Notice that

$$
G^{\prime}=[G, G], \quad G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right], \quad G^{\prime \prime \prime}=\left[G^{\prime \prime}, G^{\prime \prime}\right], \quad \ldots \quad, \quad G^{(k+1)}=\left[G^{(k)}, G^{(k)}\right] .
$$

## Lemma

If $K \leq H \leq G$, then $[K, K] \leq[H, H]$.

## Proposition

If $G$ is solvable and $H \leq G$, then $H$ is solvable.

## Proof

By the lemma, $H^{\prime}=[H, H] \leq[G, G]=G^{\prime}$, and inductively,

$$
H^{\prime \prime}=\left[H^{\prime}, H^{\prime}\right] \leq\left[G^{\prime}, G^{\prime}\right]=G^{\prime \prime}, \quad \ldots \quad, \quad H^{(k+1)}=\left[H^{(k)}, H^{(k)}\right] \leq\left[G^{(k)}, G^{(k)}\right]=G^{(k+1)} .
$$

Since $G$ is solvable, $G^{(m)}=\langle 1\rangle$ for some $m \in \mathbb{N}$.
Solvability of $H$ follows immediately from $H^{(m)} \leq G^{(m)}=\langle 1\rangle$.

## Solvability and quotients

## Proposition

If $G$ is solvable and $N \unlhd G$, then $G / N$ is solvable.

## Proof

Let $\pi: G \rightarrow G / N$. The commutator of the quotient is the quotient of the commutator:

$$
\pi([x, y])=\pi\left(x y x^{-1} y^{-1}\right)=x y x^{-1} y^{-1} N=[x N, y N] .
$$

Therefore, $(G / N)^{\prime}=\pi\left(G^{\prime}\right)$, and $(G / N)^{(k)}=\pi\left(G^{(k)}\right)$.
Since $G$ is solvable, $G^{(m)}=\langle 1\rangle$ for some $m \in \mathbb{N}$.
Therefore, $(G / N)^{(m)}=N / N$, and hence $G / N$ is solvable.

The proof above suggests that commutators behave well under homomorphisms.

## Exercise

Suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then:
(i) $\phi([h, k])=[\phi(h), \phi(k)]$, for all $h, k \in G_{1}$.
(ii) $\phi([H, K])=[\phi(H), \phi(K)]$, for all $H, K \leq G_{1}$.

## Solvability

## Theorem

Suppose $N \unlhd G$. Then $G$ is solvable if and only if $G / N$ and $N$ are solvable.

## Proof

Use the correspondence theorem to create a composition series of $G$ :


## Solvability and extensions: abelian vs. cyclic

## Big ideas

Composition factors are like "atoms" that groups are built with. They are either cyclic, or nonabelian simple groups.

A group $G$ solvable if

- we can climb down the subgroup lattice using "maximal abelian descents"
- the (minimal) "simple steps" down the subgroup lattice are all cyclic.


## Theorem

The following groups are solvable.

- p-groups (we'll prove soon)
- All groups of order $p^{n} q^{m}$, for primes $p$ and $q$ (Burnside)
- Groups of order $p^{n} \cdot m(p \nmid m)$ that have a subgroup of order $m$.
- Groups of odd order (Feit-Thompson; 250+ page proof).

■ Groups for which all 2-generator subgroups are solvable (Thompson; 475 page proof that uses the Feit-Thompson result).

## Central ascents

Starting from any normal subgroup $N \unlhd G$, we can ask:
"if we quotient by $N$ (chop off the lattice below), what subgroup $Z / N$ is the center?" We'll give this a memorable name, as we did for (maximal) abelian descents.

## Definition

If $N \unlhd G$, then $Z \leq G$ is a

- central ascent from $N$ if $Z / N \leq Z(G / N)$,
- maximal central ascent from $N$ if $Z / N=Z(G / N)$.


By iterating this process from $Z_{0}=\langle 1\rangle$, we can (attempt to) climb up a subgroup lattice.

## Nilpotent groups and the ascending central series

## Definition

Let $G$ be a finite group, and let $Z_{0}=\langle 1\rangle$ and $Z_{1}=Z(G)$. The series

$$
\langle 1\rangle=Z_{0} \unlhd Z_{1} \unlhd Z_{2} \unlhd \cdots, \quad \text { where } \quad Z_{k+1} / Z_{k}=Z\left(G / Z_{k}\right)
$$

is the ascending central series of $G$, and if $Z_{m}=G$ for some $m \in \mathbb{N}$, then $G$ is nilpotent. The minimal $m$ is the nilpotency class.


## Big idea

The subgroup $Z_{k+1}$ is the maximal central ascent from $Z_{k}$.

## Nilpotent groups and central extensions

## Proposition

If $G$ is nilpotent, then it is solvable.

## Proof

The ascending central series $\langle 1\rangle=Z_{0} \unlhd Z_{1} \unlhd \cdots \unlhd Z_{m}=G$ is a normal (and hence subnormal) series of $G$. (Why?)

Since $Z_{k+1} / Z_{k}$ is the center of the group $G / Z_{k}$, it is abelian.
Since $G$ has a subnormal series with abelian factors, it is solvable.

One easy way to remember this
"it's easier to fall down than to climb up."

## Corollary

Every p-group is nilpotent, and hence solvable.

## Proof

Since $p$-groups have nontrivial centers, $Z_{i} \lesseqgtr Z_{i+1}$ for each $i$.

## Nilpotent groups

Starting from $N \unlhd G$, we can ask:
How can we characterize the central ascents algebraically? Which one is maximal?

## Central series lemma

If $N \leq H \leq G$ and $N \unlhd G$, then

$$
H / N \leq Z(G / N) \quad \text { if and only if } \quad[G, H] \leq N
$$

In particular, the maximal central ascent from $N$ is: $Z=\{x \in G \mid[g, x] \in N\}$.

## Proof

If $H / N$ is in the center of $G / N$, then for all $h \in H$ and $g \in G$

$$
g N \cdot h N=h N \cdot g N \quad \Longleftrightarrow \quad g h g^{-1} h^{-1} N=N \quad \Longleftrightarrow \quad[g, h] \in N \quad \Longleftrightarrow \quad[G, H] \leq N .
$$

## Definition

If $N \unlhd G$, then $L=[G, N]$ is a maximal central descent from $N$. Intermediate subgroups $L \leq K \leq N$ are central descents.

## Central ascents



## Central descents



## The descending central series

To take "maximal central descents" down a subgroup lattice: at each $L_{k}$, look down and ask " what's the smallest subgroup $L_{k+1}$ where we can chop off so $G / L_{k}$ remains central?'


We call this the descending central series of $G$.

## Another way to climb down a subgroup lattice

## Definition

The descending central series is the normal series

$$
G=L_{0} \unrhd L_{1} \unrhd L_{2} \unrhd \cdots, \quad L_{1}=\left[G, L_{0}\right], L_{2}=\left[G, L_{1}\right], \ldots, L_{k+1}=\left[G, L_{k}\right] .
$$

It is "harder" to climb down a subgroup lattice in this manner than via the derived series:

$$
G \unrhd G^{\prime} \unrhd G^{\prime \prime} \unrhd \cdots, \quad G^{\prime}=[G, G], G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right], \ldots, G_{(k+1)}=\left[G^{(k)}, G^{(k)}\right] .
$$

## Proposition

For any group $G$, we have $G^{(k)} \leq L_{k}$.

## Proof

We start with $G^{(0)}=L_{0}=G$ and $G^{1}=L_{1}=[G, G]$. However, at the second step,

$$
G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right] \leq\left[G, G^{\prime}\right]=\left[G, L_{1}\right]=L_{2},
$$

with the inequality due to $G^{\prime} \leq G$. Inductively, if $G^{(k-1)} \leq L_{k-1}$, then

$$
G^{(k)}=\left[G^{(k-1)}, G^{(k-1)}\right] \leq\left[G, L_{k-1}\right]=L_{k},
$$

with the inequality holding because $G^{(k-1)} \leq G$ and $G^{(k-1)} \leq L_{k-1}$.

## Chutes and Ladders diagrams

Define the Chutes and Ladders diagram of $G$ from its lattice by adding, for each $N \unlhd G$ :

- a red arrow for each maximal central descent $N \backslash L$, i.e., $L=[G, N]$,
- a blue arrow for each maximal central ascent, $N / Z$, i.e., $Z / N=Z(G / N)$.


The ascending and descending central series can be read right off this diagram!

Ascending vs. descending central series
The ascending and descending central series differ for 6 of 9 nonabelian groups of order 16 .
This is the smallest $|G|$ for which this happens.


## Key idea (that we'll prove)

The ascending and descending central series have the same length.

## An important technical lemma

The following lemma should come off as uninspiring and non-obvious.

## Lemma

Suppose $N \leq H, K \leq G$ are normal. If $[G, H] \leq N$ and $[G, K] \leq N$, then $[G, H K] \leq N$.

Now, let's restate this using the central series lemma: If $N \leq H \leq G$ and $N \unlhd G$, then

$$
H / N \leq Z(G / N) \quad \text { if and only if } \quad[G, H] \leq N .
$$

## Lemma, restated

If $H / N$ and $K / N$ are central in $G / N$, then their product $H K / N$ is as well.

$\langle 1\rangle$

A stronger result than we actually need

## Theorem (we'll prove this next)

Let $G$ be a finite group for which $L_{n-1} \nsucceq L_{n}=\langle 1\rangle$. Then for all $k=0,1 \ldots, n$,

$$
L_{n-k} \leq Z_{k}
$$

## Corollary

The ascending central series reaches $Z_{n}=G$ iff the descending central series reaches $L_{m}=\langle 1\rangle$. If this happens, their lengths are the same.

## Proof

If the ACS reaches the top, say $Z_{n-1} \leq Z_{n}=G$, then $L_{n} \leq Z_{0}=\langle 1\rangle$, so the DCS reaches the bottom in at most $n$ steps. Hence length $(D C S) \leq$ length $(A C S)$.

If the DCS reaches the bottom, say $\langle 1\rangle=L_{m} \lesseqgtr L_{m-1}$, then $G=L_{0} \leq Z_{m}$, so the ACS reaches the top in at most $m$ steps. Hence length $(A C S) \leq$ length $(D C S)$.

## Proof of the stronger result

## Theorem

Let $G$ be a finite group for which $L_{n-1} \ngtr L_{n}=\langle 1\rangle$. Then $L_{n-k} \leq Z_{k}$, for all $k=0,1 \ldots, n$,

## Proof

Throughout, the following facts will be used repeatedly:

$$
\begin{equation*}
\left[G, L_{k}\right]=L_{k+1} \quad(\text { definition }), \quad\left[G, Z_{k}\right] \leq Z_{k-1} \quad(\text { by central series lemma }) \tag{1}
\end{equation*}
$$

Suppose $G$ is nilpotent of class $n$, i.e., $Z_{n-1} \lesseqgtr Z_{n}=G=L_{0}$.
Start at the top of the lattice and work down. We have $\left[G, L_{0}\right]=\left[G, Z_{n}\right]$, and applying Eq. (1) gives.

$$
L_{1}=\left[G, L_{0}\right]=\left[G, Z_{n}\right] \leq Z_{n-1} .
$$

Now, we have $\left[G, L_{1}\right] \leq\left[G, Z_{n-1}\right]$. Applying Eq. (1) again gives

$$
\begin{array}{rccccc}
L_{2} & =\left[G, L_{1}\right] & \leq \\
L_{3} & =\left[G, Z_{n-1}\right] & \leq & Z_{n-2} \\
& \vdots \\
& & \left.L_{2}\right] & \leq & \vdots \\
L_{k} & =\left[G, Z_{n-2}\right] & \leq & Z_{n-3} \\
\vdots & \leq & \\
& & & \\
& \left.Z_{n+k-1}\right] & \leq & Z_{n-k},
\end{array}
$$

and $L_{n-k} \leq Z_{k}$ follows.

## Picture of the proof we just did (left diagram)

(start up here)


## Proof of the stronger result

## Theorem

Let $G$ be a finite group for which $L_{n-1} \ngtr L_{n}=\langle 1\rangle$. Then $L_{n-k} \leq Z_{k}$, for all $k=0,1 \ldots, n$,

## Proof (contin.)

Next, suppose $L_{n-1} \geqslant L_{n}=\langle 1\rangle=Z_{0}$; we'll will work our way $u p$ the lattice.
Starting at $L_{n}=\left[G, L_{n-1}\right]=\langle 1\rangle=Z_{0}$, apply the central series lemma to $\left[G, L_{n-1}\right] \leq Z_{0}$ :

$$
L_{n-1} \cong L_{n-1} / Z_{0} \leq Z\left(G / Z_{0}\right) \cong Z(G)=Z_{1}
$$

Next goal: Working upwards, show $L_{n-2} \leq Z_{2}, L_{n-3} \leq Z_{3}$, and inductively, $L_{n-k} \leq Z_{k}$.

## It suffices to show:

$$
L_{n-k} \leq L_{n-k} Z_{k-1} \leq Z_{k}
$$

How: Apply our Lemma with $H=L_{n-2}, K=Z_{1}$, and $N=Z_{1}$.


## Proof of the stronger result

## Theorem

Let $G$ be a finite group for which $L_{n-1} \geqslant L_{n}=\langle 1\rangle$. Then $L_{n-k} \leq Z_{k}$, for all $k=0,1 \ldots, n$,

## Proof (contin.)

It suffices to show:

$$
L_{n-k} \leq L_{n-k} Z_{k-1} \leq Z_{k}
$$

How: Taking $H=L_{n-2}, K=Z_{1}$, and $N=Z_{1}$, we have

$$
[G, H]=\left[G, L_{n-2}\right]=L_{n-1} \leq Z_{1}=N, \quad[G, K]=\left[G, Z_{1}\right] \leq Z_{0} \leq Z_{1}=N
$$

and our Lemma $([G, H K] \leq N)$ gives $\left[G, L_{n-2} Z_{1}\right] \leq Z_{1}$.
Translating this back into quotients, by the central series lemma:

$$
\underbrace{L_{n-2} Z_{1} / Z_{1}}_{=H K / N} \leq \underbrace{Z\left(G / Z_{1}\right)}_{=Z(G / N)}:=Z_{2} / Z_{1} \text {. }
$$

The inequality, $L_{n-2} Z_{1} \leq Z_{2}$ now follows from the correspondence theorem.
Repeating this process inductively gives the desired result.

Picture of the proof we just did
(start up here)


Products of nilpotent groups are nilpotent

## Lemma

If $G=H \times K$, then $L_{n}(G)=L_{n}(H) \times L_{n}(K)$ for all $n$.

## Proof

The proof is by induction. The base case is easy:

$$
G=L_{0}(G)=L_{0}(H) \times L_{0}(K)=H \times K
$$

Next, suppose that $L_{k}(G)=L_{k}(H) \times L_{k}(K)$. Then

$$
\begin{aligned}
L_{k+1}(G)=\left[H \times K, L_{k}(H \times K)\right] & =\left[H \times K, L_{k}(H) \times L_{k}(K)\right] \\
& =\left[H, L_{k}(H)\right] \times\left[K, L_{k}(K)\right] \\
& =L_{k+1}(H) \times L_{k+1}(K),
\end{aligned}
$$

and the result follows inductively.

## Corollary

If $H$ and $K$ are nilpotent, then so is $G=H \times K$.

## Normalizers grow in nilpotent groups

In the ascending central series, each $Z_{i+1}$ was defined implictly, via $Z_{i+1} / Z_{i}=Z\left(G / Z_{i}\right)$.
Since $Z_{i+1}$ is the maximal central ascent from $Z_{i}$, we have an explicit formula:

$$
Z_{i+1}=\left\{x \in G \mid[x, g] \in Z_{i}, \forall g \in G\right\}=\left\{x \in G \mid x Z_{i} g Z_{i}=g Z_{i} x Z_{i}, \forall g \in G\right\}
$$

## Proposition

Subgroups of a nilpotent group $G$ cannot be fully unnormal: if $H \lesseqgtr G$, then $H \lesseqgtr N_{G}(H)$.

## Proof

Take the maximal $Z_{k}$ containing $H$. We'll show that $N_{G}(H)$ contains $Z_{k+1}$.
Pick some $x \in Z_{k+1}$. (Need to show it normalizes H.)
For all $g \in G$, we have $[x, g] \in Z_{k}$.
Thus, $[x, h]=x h x^{-1} h^{-1} \in Z_{k} \leq H, \quad$ for all $h \in H$.
Since $x h x^{-1} h^{-1} \in H$, then $x h x^{-1} \in H$.


Thus, $x \in N_{G}(H)$.

## Sylow p-subgroups of nilpotent groups

## Proposition

A finite group is nilpotent iff it is the internal direct product of its Sylow p-subgroups.

## Proof

" $\Leftarrow$ ": by previous lemma.
" $\Rightarrow$ ": Let $P \in \operatorname{Syl}_{p}(G)$ be a Sylow $p$-subgroup.
Then "normalizers must grow", but also $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$.
Thus $N_{G}(P)=G$, so $P \unlhd G$ is the unique Sylow $p$-subgroup of $G$.
Let $P_{1}, \ldots, P_{k}$ be the distinct Sylow $p_{i}$-subgroups of $G$. We need to verify:

1. $G=P_{1} P_{2} \cdots P_{k}$.
2. each $P_{i} \unlhd G$.
3. each $P_{i}$ trivially intersects

$$
Q_{i}:=\left\langle P_{j} \mid j \neq i\right\rangle .
$$

If $g \in P_{i} \cap Q_{i}$, then $|g|=p_{i}^{\ell}$ divides $\prod_{j \neq i} p_{j}^{d_{j}}$, which is co-prime to $p_{i}$.

## Central series

## Definition

A central series of a group $G$ is a normal series

$$
\langle 1\rangle=C_{0} \unlhd C_{1} \unlhd \cdots \unlhd C_{m}=G, \quad \text { such that } \quad C_{k+1} / C_{k} \leq Z\left(G / C_{k}\right)
$$

Equivalently, $G / C_{k}$ is a central extension of $G / C_{k+1}$ by $C_{k+1} / C_{k}$.

$$
1 \longrightarrow C_{k+1} / C_{k} \xrightarrow{\iota_{k}} G / C_{k} \xrightarrow{\pi_{k}} G / C_{k+1} \longrightarrow 1
$$



## Central series

## Remark

The ascending central series of a nilpotent group $G$ is a normal series

$$
\langle 1\rangle=Z_{0} \unlhd Z_{1} \unlhd \cdots \unlhd Z_{m}=G, \quad \text { such that } \quad Z_{k+1} / Z_{k}=Z\left(G / Z_{k}\right) .
$$

Equivalently, $G / Z_{k}$ is the maximal central extension of $G / Z_{k+1}$ (by $C_{k+1} / C_{k}$ ).

$$
1 \longrightarrow Z_{k+1} / C_{k} \xrightarrow{\iota_{k}} G / Z_{k} \xrightarrow{\pi_{k}} G / Z_{k+1} \longrightarrow 1
$$



## Central series

## Remark

The descending central series of a group $G$ is a normal series

$$
G=L_{0} \unrhd L_{1} \unrhd \cdots \unrhd L_{m}=G, \quad \text { such that } \quad L_{k} / L_{k+1} \leq Z\left(G / L_{k+1}\right) .
$$

Equivalently, $G / L_{k+1}$ is a central extension of $G / C_{k}$ by $L_{k} / L_{k+1}$.

$$
1 \longrightarrow L_{k} / L_{k+1} \xrightarrow{\iota_{k}} G / L_{k+1} \xrightarrow{\pi_{k}} G / L_{k} \longrightarrow 1
$$




Solvability and nilpotency in terms of extensions

## Summary

- Every finite group can be constructed from extensions of simple groups.
- Solvable groups can be constructed from abelian extensions.
- Nilpotent groups can be constructed from central extensions.



## Summary of nilpotent groups

## Theorem

A finite group $G$ is nilpotent if any of the following conditions hold:

1. $Z_{n}=G$ for some $n$ ("the ascending central series reaches the top")
2. $L_{m}=\langle 1\rangle$ for some $m$, ("descending central series reaches the bottom")
3. $H \lesseqgtr N_{G}(H)$ for all proper subgroups, ("no fully unnormal subgroups")
4. All Sylow $p$-subgroups are normal.
5. $G$ is the direct product of its Sylow $p$-subgroups.
6. Every maximal subgroup of $G$ is normal.


## Factoring maps

We've discussed a number of properties that can be described as
"the minimal $\qquad$ ,"
or
"the maximal $\qquad$ ,"
satisfying some condition.
We'll see to express this concisely in terms of maps and commutative diagrams.
This will highlight similarities and patterns that are inherent in seemingly different structures, streamline proofs, and lead to new insight.

## Warm-up exercise (easy)

Given maps $g: G \rightarrow H$ and $h: H \rightarrow K$, their composition $f:=h \circ g$ is a map from $G$ to $K$.
I.e., there is always a map $f: G \rightarrow K$ making the following diagram commute:


## Factoring maps

Let's now consider two variants of the previous commutative diagram.

## Definition

Given two maps.. .

1. from the same domain, $f: G \rightarrow K, g: G \rightarrow H$, when does there exist $h: H \rightarrow K$
2. into the same codomain, $f: G \rightarrow K, h: H \rightarrow K$, when does there exist $g: G \rightarrow H$ such that $f=h \circ g$ ?

" $f$ factors through $g$ "

" $f$ factors through $h "$

We say that $h$ and $g$ are factors of $f$.

We'll do an example of each that will nicely illustrate when and why this happens.
Both will involve $G=\mathrm{SA}_{8}=\langle r, s\rangle$, and its subgroups $N=\left\langle r^{2}\right\rangle \cong C_{4}$, and $M=\left\langle r^{4}\right\rangle \cong C_{2}$.

Factoring maps: a quotient between the codomains
Let $G=\mathrm{SA}_{8}=\langle r, s\rangle$, and $N=\left\langle r^{2}\right\rangle \cong C_{4}$, and $M=\left\langle r^{4}\right\rangle \cong C_{2}$.
The standard quotient map $f: \mathrm{SA}_{8} \rightarrow V_{4}$ can be factored:


Factoring maps: a quotient between the codomains

Formally, this map is defined by

$$
h: \mathrm{SA}_{8} / N \longrightarrow \mathrm{SA}_{8} / M, \quad h: g N \longmapsto g M
$$



Factoring maps: an embedding between the domains
Let $V_{4}=\{e, x, y, x y\}$ and $\mathrm{SA}_{8}=\langle r, s\rangle$. The embedding

$$
f: V_{4} \longleftrightarrow \mathrm{SA}_{8}, \quad x \longmapsto r^{4}, \quad y \longmapsto s
$$

uniquely factors through $h: C_{4} \times C_{2} \rightarrow \mathrm{SA}_{8}$, where $(1,0) \mapsto r^{2}$ and $(0,1) \mapsto s$.


Factoring maps: an embedding between the domains

Let $V_{4}=\{e, x, y, x y\}$ and $\mathrm{SA}_{8}=\langle r, s\rangle$. Here's that same embedding

$$
f: V_{4} \hookrightarrow \mathrm{SA}_{8}, \quad x \longmapsto r^{4}, \quad y \longmapsto s
$$

that uniquely factors through $h: C_{4} \times C_{2} \rightarrow \mathrm{SA}_{8}$, where $(1,0) \mapsto r^{2}$ and $(0,1) \mapsto s$.


Canceling maps: when does existence imply uniqueness?

## Proposition ("cancelation laws")

Suppose we have functions $g_{i}: G \rightarrow H$ and $h_{i}: H \rightarrow K$ between sets, for $i=1,2$.
If $g$ is surjective, then it right-cancels: $\quad h_{1} \circ g=h_{2} \circ g \Longrightarrow h_{1}=h_{2}$.

and


$$
\Longrightarrow \quad h_{1}=h_{2}
$$

If $h$ is injective, then it left-cancels: $\quad h \circ g_{1}=h \circ g_{2} \Longrightarrow g_{1}=g_{2}$.


$$
\Longrightarrow \quad g_{1}=g_{2}
$$

## Key idea

Injective functions have left inverses; surjective functions have right inverses.

## Failure of uniqueness: a quotient between domains

Let $D_{4}=\langle r, s\rangle$ with subgroups $N=\left\langle r^{2}\right\rangle \cong C_{2}$ and $M=\langle r\rangle \cong C_{4}$.
Their quotients are $V_{4} \cong D_{4} / N=\{N, r N, s N, r s N\}$ and $C_{2} \cong D_{4} / M=\{M, s M\}$.
Define the functions $f: D_{4} \rightarrow C_{2}$ and $h: V_{4} \rightarrow C_{2}$ as follows:


We must have $g: 1 \mapsto N$. Since $f: r \mapsto M$, then $g(r) \in \operatorname{Ker}(h)=\{r N, N\}$.
If $g(r)=N$, then $g$ is not surjective, but we still have $f=h \circ g$.

## Warning!

The homomorphism $g: D_{4} \rightarrow V_{4}$ is not uniquely defined! ( $r \mapsto N$ would work too)

Moral: commutative diagrams can be deceiving!

Failure of uniqueness: a quotient between domains

Multiple maps $g_{i}$ make this diagram commute; both $r \mapsto r N$ and $r \mapsto N$ work.


For surjective maps, $h \circ g_{1}=h \circ g_{2} \nRightarrow g_{1}=g_{2}$.

Failure of uniqueness: a quotient between domains

Note that $g_{i}: D_{4} \rightarrow V_{4}$ need not be surjective for the following diagram to commute.


Any choice of $g_{i}(r) \in\{N, r N\}$ and $g_{i}(s) \in\{s N, r s N\}$ would work.

Failure of uniqueness: an embedding between codomains
Consider two maps from $G=C_{2}=\{1, a\}$ into $H=V_{4}=\{e, x, y, x y\}$ and $K=D_{4}=\langle r, s\rangle$ :

$$
f: C_{2} \longrightarrow D_{4}, \quad f(a)=r^{2}, \quad g: C_{2} \longrightarrow V_{4}, \quad f(a)=x
$$

There are multiple embeddings $h_{i}: V_{4} \hookrightarrow D_{4}$ that make this diagram commute:


For injective maps, $h_{1} \circ g=h_{2} \circ g \nRightarrow h_{1}=h_{2}$.

Failure of uniqueness: an embedding between codomains

Here is another way to see why there are multiple embeddings $h_{i}: V_{4} \hookrightarrow D_{4}$ that make this diagram commute:


For injective maps, $h_{1} \circ g=h_{2} \circ g \nRightarrow h_{1}=h_{2}$.

## Factoring non-homomorphisms

## Definition

Let $G / N$ be a set (not necessarily a group) of equivalence classes. The map $\phi$ from $G$ descends to a map from $G / N$ if it factors through the canonical quotient $\pi: G \rightarrow G / N$.

For example, we have seen that:

- the $\operatorname{map} \phi: G \rightarrow \mathrm{cl}_{G}(H)$ descends to a bijection $G / N_{G}(H) \rightarrow \mathrm{cl}_{G}(H)$.

- the $\operatorname{map} \phi: G \rightarrow \mathrm{cl}_{G}(g)$ descends to a bijection $G / C_{G}(g) \rightarrow \mathrm{cl}_{G}(g)$.
- For a fixed $s \in S, \phi: G \rightarrow \operatorname{orb}(s)$ descends to a bijection $G / \operatorname{stab}(s) \rightarrow \operatorname{orb}(s)$.



## Motivating the co-universal property of quotient groups

## Definition

Given $H \leq G$, the canonical inclusion map is

$$
\iota: H \hookrightarrow G, \quad \iota: h \longmapsto h .
$$

If $H \unlhd G$, the canonical quotient map is

$$
\pi: G \longrightarrow G / H, \quad \pi: g \longmapsto g H .
$$

There does not exist a homomorphism $\phi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{4}$ with $\phi(1)=1$. To formalize this: the canonical quotient $f: \mathbb{Z} \rightarrow \mathbb{Z}_{4}$ does not factor through $g: \mathbb{Z} \rightarrow \mathbb{Z}_{3}$.

That is, there does not exist $\phi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{4}$ making this diagram commute:


Preview: such a map exists iff $\operatorname{Ker}(\pi) \leq \operatorname{Ker}(f)$, i.e., $f$ collapses at least as much as $\pi$.

## Motivating the co-universal property of quotient groups

Does $\phi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{12}$, where $\phi(1)=3$, define a homomorphism?
Is there a homomorphism $\phi$ making the following diagram commute?


Note that $\operatorname{Ker}(f)=4 \mathbb{Z}$ is a subgroup of $\operatorname{Ker}(\pi)=8 \mathbb{Z}$, and so $f$ factors through $\pi$.
Not only does $\phi$ exist, it is automatically unique by the cancellation laws.

The co-universal property of quotient groups

## Theorem

Let $N \unlhd G$ and $f: G \rightarrow K$ be a homomorphism such that $N \leq \operatorname{Ker}(f)$. Then

1. $f$ uniquely factors through $\pi: G \rightarrow G / N$ (i.e., $\exists!h: G / N \rightarrow K$ such that $g=h \circ \pi$ ).
2. $h$ is injective iff $\operatorname{Ker}(f)=N$.

## Proof (i)

Assume WLOG that $f$ is onto (otherwise, take $K=\operatorname{Im}(f)$ ). Define $h: G / N \rightarrow H$ by


Well-defined: If $x N=y N$, then $y^{-1} x N=N$, so $y^{-1} x \in N=\operatorname{Ker}(\pi) \leq \operatorname{Ker}(f)$. Now,

$$
f\left(y^{-1} x\right)=1 \quad \Longrightarrow \quad f(y)^{-1} f(x)=1 \quad \Longrightarrow \quad h(x N)=f(x)=f(y)=h(y N)
$$

Homomorphism: $\quad h(x N y N)=h(x y N)=f(x y)=f(x) f(y)=h(x H) h(y N)$.
Uniqueness: Follows from existence, since $f$ and $\pi$ are quotients (cancellation laws).

The co-universal property of quotient groups

## Theorem

Let $N \unlhd G$ and $f: G \rightarrow K$ be a homomorphism such that $N \leq \operatorname{Ker}(f)$. Then

1. $f$ uniquely factors through $\pi: G \rightarrow G / N$ (i.e., $\exists!h: G / N \rightarrow K$ such that $g=h \circ \pi$ ).
2. $h$ is injective iff $\operatorname{Ker}(f)=N$.

## Proof (ii)

Assume WLOG that $f$ is onto. We just found the unique $h$ such that


Let $H=\operatorname{Ker}(f)$, and note that

$$
\operatorname{Ker}(h)=\left\{x N \mid f(x)=1_{K}\right\}=\{x N \mid x \in H\}=H / N .
$$

Note that $h$ is injective iff $|\operatorname{Ker}(h)|=1$, or equivalently, $H=N$.

## Co-universal property of quotient groups $\Rightarrow$ FHT

## Corollary: Fundamental homomorphism theorem

If $f: G \rightarrow H$ is a homomorphism, then $G / \operatorname{Ker}(f) \cong \operatorname{Im}(f)$.

## Proof

Let $K=\operatorname{Im}(f)$ and $N=\operatorname{Ker}(f)$ with canonical quotient map $\pi: G \rightarrow G / N$.
By construction, $\operatorname{Ker}(f)=N=\operatorname{Ker}(\pi)$.
By the co-universal property of quotient maps, $f$ factors through the quotient:


Since $\operatorname{Ker}(f)=N$, the map $\iota$ is injective by Part (ii) of the previous theorem.
Therefore, $\iota$ is an isomorphism.

## Abstracting the (co)-universal property

To motivate where we're going, let's rephrase what we just did as
" $G / N$ is the largest quotient that collapses $N$, in that any other homomorphism collapsing $N$ factors through $\pi: G \rightarrow G / N$ uniquely."


Compare this to what we know about the commutator subgroup $G^{\prime}$ :
" $G / G$ ' is the largest abelian quotient of $G$, in that any other homomorphism to an abelian group factors through $\alpha: G \rightarrow G / G^{\prime}$ uniquely."


## Abstracting the (co)-universal property

The co-universal property of quotients came with a distinguished (maximal)

- group $G / N$, and
- canonical map $\pi: G \rightarrow G / N$.


## Definition

A co-universal pair $(C, \chi)$ for a group $G$ w.r.t. a property consists of:

- a group $C$, with
- an incoming map $\chi: G \rightarrow C$,
such that every $f: G \rightarrow H$ with the same property factors through $\chi$ uniquely.
I.e., there is a unique homomorphism $h: C \rightarrow H$ between co-domains such that $f=h \circ \chi$.



## Abstracting the (co)-universal property

## Proposition

If $G$ has a co-universal pair $(C, \chi)$ w.r.t. some property, $C$ is unique up to isomorphism.

## Proof

Let $(C, \chi)$ and $\left(C^{\prime}, \chi^{\prime}\right)$ be co-universal. Start with $(C, \chi)$, and take $H=C^{\prime}$ and $f=\chi^{\prime}$. By definition, $\exists!h: C \rightarrow C^{\prime}$ such that $\chi^{\prime}=h \circ \chi$. Reverse the roles, and we get:


We can "stack" one diagrams on the other, and vice-versa:


By uniqueness, $h \circ h^{\prime}=\operatorname{ld}_{C}$ (left), and $h^{\prime} \circ h=\operatorname{ld}_{C^{\prime}}$ (right). Thus, $C \cong C^{\prime}$.

## A co-universal property and nilpotency

Recall that we characterized nilpotent groups via iterative "maximal central descents."
Given $N \unlhd G$, the maximal central descent [ $G, N$ ] is characterized as being
"the smallest subgroup $L$ such that $N / L$ is central in $G / L$ ".
We can phrase this as a co-universal property.
Consider $(L, \lambda)$, where $L=[G, N]$ and $\lambda: G \rightarrow G / L$ is the canonical quotient.

## Co-universal property of central descents (HW)

Let $N \unlhd G$ and $f: G \rightarrow K$ for which $f(N)$ is central. Then $f$ uniquely factors through the canonical quotient map $\lambda: G \rightarrow G / L$, where $L=[G, N]$.

That is, there is a unique homomorphism $h: G / L \rightarrow K$ for which $f=h \circ \lambda$.


## Universal vs. co-universal properties

We call the examples we've seen co-universal because the map is between the co-domains.
The "dual" version, where the maps is between the domains, are universal properties.
Most books don't distinguish these two, and use "universal" for both.
The examples we've seen were maximal quotients. Let's now look at maximal subgroups.

## Universal property of centers

Let $H \leq G$ for which $x z=z x$ for all $z \in H$ and $x \in G$. The canonical inclusion $g: H \hookrightarrow G$ uniquely factors through $\zeta: Z(G) \hookrightarrow G$.

That is, there is a unique embedding $g: H \hookrightarrow Z(G)$ for which $f=\zeta \circ g$.


## Another universal property

## Universal property of central ascents

Given $N \unlhd G$, suppose that $H / N \leq Z(G / N)$. The canonical inclusion $H / N \hookrightarrow G / N$ uniquely factors through $\zeta: Z(G / N) \hookrightarrow G / N$.

That is, there is a unique embedding $g: H / N \hookrightarrow Z(G / N)$ for which $f=\zeta \circ g$.


## Universal pairs and universal constructions

## Definition

A universal pair $(U, v)$ for $G$ w.r.t. a property consists of a group $U$ and map $v: U \rightarrow G$, such that every other $f: H \rightarrow G$ with the same property factors through $v$ uniquely.

That is, $\exists!g: H \rightarrow U$ between the domains such that $f=v \circ g$.


## Proposition (HW)

If $G$ has a universal pair $(U, v)$ w.r.t. some property, then $U$ is unique up to isomorphism.

It's not standard or necessary to characterize a simple concept like $Z(G)$ with a universal property. We did it as a "warm up."

Soon, we'll define concepts by a (co-)universal property.
These are examples of universal constructions.

Motivation: direct product vs. direct sums

## Open-ended question

What is the limit of $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\}$, as $n \rightarrow \infty$ ?

- Define $\mathbb{R}^{\infty}$ to be the space of all infinite sequences

$$
\mathbb{R}^{\infty}:=\prod_{i=1}^{\infty} \mathbb{R}:=\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in \mathbb{R}\right\}
$$

This space contains "vectors" such as $(1,1,1, \ldots)$. We'll call it the "direct product."
■ Define $\mathbb{E}^{\infty}$ to be the space of all finite sums, like

$$
\mathbf{e}=a_{1} \mathbf{e}_{1}+\cdots+a_{n} \mathbf{e}_{n}=\sum_{i=1}^{n} a_{i} \mathbf{e}_{i}, \quad\|\mathbf{v}\|=\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}} .
$$

We'll call this the "direct sum".

$$
\begin{aligned}
\mathbb{E}^{\infty}:=\bigoplus_{i=1}^{\infty} \mathbb{R} \mathbf{e}_{i}: & =\mathbb{R} \mathbf{e}_{1} \oplus \mathbb{R} \mathbf{e}_{2} \oplus \mathbb{R} \mathbf{e}_{3} \oplus \cdots=\left\{\sum_{i=1}^{k} a_{i} \mathbf{e}_{i} \mid a_{i} \in \mathbb{R}, k \geq 1\right\} \\
& \cong\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in \mathbb{R}, \text { all but finitely many } a_{j} \text { are zero }\right\} .
\end{aligned}
$$

Motivation: direct product vs. direct sums
Define the canonical quotient maps for each $i=1,2, \ldots$ as

$$
\pi_{i}: \mathbb{R} \times \mathbb{R} \times \cdots \longrightarrow \mathbb{R}, \quad \pi_{i}:\left(a_{1}, a_{2}, \ldots\right) \longmapsto a_{i} .
$$

The direct product is the "smallest $P$ that projects onto each factor."
Given any family $f_{i}: X \rightarrow \mathbb{R}$ of maps, each $f_{i}$ factors through the projection $\pi_{i}: P \rightarrow \mathbb{R}$.


Let's see why this fails if we tried to use $\mathbb{E}^{\infty}$ for $P$ :


Motivation: direct product vs. direct sums
Define the natural inclusion map for each $j=1,2, \ldots$ as

$$
\iota_{j}: \mathbb{R} \mathbf{e}_{j} \hookrightarrow \bigoplus_{i=1}^{\infty} \mathbb{R} \mathbf{e}_{i}, \quad \iota_{j}: a_{j} \mathbf{e}_{j} \longmapsto a_{j} \mathbf{e}_{j}
$$

The direct sum is the "smallest $S$ that each factor embeds into."
Given any family $f_{j}: \mathbb{R} \mathbf{e}_{j} \rightarrow X$ of maps, each $\iota_{j}$ factors through the embedding $\iota_{j}: \mathbb{R} \mathbf{e}_{j} \hookrightarrow S$.


Let's see why this fails if we try to use $\mathbb{R}^{\infty}$ for $S$ :


## Returning to groups

Let $\left\{G_{\alpha} \mid \alpha \in A\right\}$ be a nonempty family of groups. We will define their product and co-product via a universal construction.


## Remark

Existence of the map needed to make these diagrams commute does not imply uniqueness from the cancellation laws - each is the "wrong type" of diagram for that.

The fact that there are such groups that guarantee uniqueness indicates that the definitions are capturing something fundamentally important.

## Definition

The product of $\left\{G_{\alpha} \mid \alpha \in A\right\}$ is a group $P$ with a family of homomorphisms $\left\{\pi_{\alpha}: P \rightarrow G_{\alpha} \mid \alpha \in A\right\}$, satisfying:

Given any group $H$ and homomorphisms $f_{\alpha}: H \rightarrow G_{\alpha}$, there is a unique homomorphism $g: H \rightarrow P$ such that $\pi_{\alpha} \circ g=f_{\alpha}$ for all $\alpha \in A$.

## Products: surjectivity and uniqueness

## Proposition

If $\left\{G_{\alpha} \mid \alpha \in A\right\}$ has a product, it is unique up to isomorphism, and each $\pi_{\alpha}$ is surjective.

## Proof

We've shown uniqueness.
To show that $\pi_{\alpha}$ is surjective, consider $\pi_{\beta}: P \rightarrow G_{\beta}$, and take $H=G_{\alpha}$.
Define $f_{\beta}$ to be the identity map if $\beta=\alpha$ and the trivial map otherwise. That is,

$$
f_{\alpha}: G_{\alpha} \longrightarrow G_{\beta}, \quad f_{\alpha}(x)= \begin{cases}x, & \alpha=\beta \\ 1, & \alpha \neq \beta\end{cases}
$$

Every element $x \in G_{\beta}$ has a $\pi_{\beta}$-preimage, $g(x) \in P$.


## Products: existness

## Proposition

The product of $\left\{G_{\alpha} \mid \alpha \in A\right\}$ is the Cartesian product, $P=\prod_{\alpha \in A} G_{\alpha}$.

## Proof

Define the canonical projection maps as

$$
\pi_{\beta}: P \longrightarrow G_{\beta}, \quad \pi_{\beta}:\left(x_{\alpha}\right)_{\alpha \in A} \longmapsto x_{\beta} .
$$

Suppose we have another family of maps $f_{\alpha}: H \rightarrow G_{\alpha}$, for each $\alpha \in A$.
Goal. Show $\exists$ ! $g: H \rightarrow P$ such that $f_{\alpha}=\pi_{\alpha} \circ g$ for all $\alpha \in A$.


Uniqueness. Suppose $\exists h: H \rightarrow P$ for which $f_{\alpha}=\pi_{\alpha} \circ h$ for all $\alpha \in A$.
This means $\pi_{\alpha} \circ g=\pi_{\alpha} \circ h$. Take $x \in H$, note that

$$
h(x)_{\beta}=\pi_{\beta}(h(x))=f_{\beta}(x)=\pi_{\beta}(g(x))=g(x)_{\beta}
$$

## Co-products

## Definition

The co-product of $\left\{G_{\alpha} \mid \alpha \in A\right\}$ is a group $S$ with a family of homomorphisms $\left\{\iota_{\alpha}: G_{\alpha} \rightarrow S \mid \alpha \in A\right\}$, satisfying:

Given any group $H$ and homomorphisms $f_{\alpha}: G_{\alpha} \rightarrow H$, there is a unique homomorphism $h: S \rightarrow H$ such that $h \circ \iota_{\alpha}=f_{\alpha}$ for all $\alpha \in A$.


## Exercise (HW)

If $\left\{G_{\alpha} \mid \alpha \in A\right\}$ has a co-product, it is unique up to isomorphism, and each $\iota_{\alpha}$ is injective.

Showing existence of a co-product is trickier - it a construction that we have not yet seen.
The product of $C_{2}$ and $C_{2}$ has order 4. The co-product is infinite.

## Categories

Some constructions we've recently seen have analogues for other mathematical objects.
We can define the product and coproduct of sets, topological spaces, rings, vector spaces, etc.

Many structural results carry over, so we'd like to generalize these in a common framework.

The mathematical field that addresses these questions is called category theory.

## Definition

A category $\mathcal{C}$ consists of

- a class $\mathrm{Ob}(\mathcal{C})$ of objects,
- a class $\operatorname{Hom}(\mathcal{C})$ of morphisms between objects, with identities, closure, and associativity.

■ Examples of "objects" include sets, groups, rings, vector spaces, topological spaces, etc.,

■ "Morphisms" are meant to be "structure-preserving maps."

## Categories

Think of the category $\mathcal{C}=$ Grp of groups as a massive directed multigraph, where

- each node represents a group

■ there is a directed edge from $A$ to $B$ for each homomorphism $f: A \rightarrow B$.
We require: identity, composition, and associativity.


Denote the morphisms from $A$ to $B$ by $\operatorname{Hom}_{\mathcal{C}}(A, B)$.
(i) Every group has an identity morphism: for every $A \in \operatorname{Ob}(\mathcal{C})$, there is $\operatorname{ld}_{A} \in \operatorname{Hom}_{C}(A, A)$ satisfying

$$
f \circ \operatorname{ld}_{A}=f, \quad \text { for all } f \in \operatorname{Hom}_{\mathcal{C}}(A, B), \quad \operatorname{ld}_{A} \circ g=g, \text { for all } h \in \operatorname{Hom}_{C}(B, A)
$$

(ii) Morphisms are closed under composition:

$$
\text { If } f \in \operatorname{Hom}_{\mathcal{C}}(A, B) \text { and } g \in \operatorname{Hom}_{\mathcal{C}}(B, C) \text {, then } g \circ f \in \operatorname{Hom}_{\mathcal{C}}(A, C) \text {. }
$$

(iii) Composition of morphisms is associative:

If $f \in \operatorname{Hom}_{\mathcal{C}}(A, B), g \in \operatorname{Hom}_{\mathcal{C}}(B, C), h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$, then $h \circ(g \circ f)=(h \circ g) \circ f$.

## Abstracting the notion of "one-to-one" and "onto"

## Definition

Let $f, f_{1}, f_{2} \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ and $g, g_{1}, g_{2} \in \operatorname{Hom}_{\mathcal{C}}(B, C)$. Then

1. $g$ is a monomorphism if $g \circ f_{1}=g \circ f_{2}$ implies $f_{1}=f_{2}$.
2. $f$ is an epimorphism if $g_{1} \circ f=g_{2} \circ f$ implies $g_{1}=g_{2}$,

Sometimes, we'll say "mono" and "epi" (noun) or "epic" (adjective).
A morphism $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ is an isomorphism if it has a two-sided inverse.
That is, if $\exists g \in \operatorname{Hom}_{C}(B, A)$ such that $g \circ f=\operatorname{ld}_{A}$ and $f \circ g=\operatorname{Id}_{B}$.
We say $A$ and $B$ are equivalent.

$$
A \xrightarrow[f_{2}]{f_{1}} B \longrightarrow \quad A \xrightarrow{g} C \quad B \xrightarrow[g_{2}]{g_{1}} C \text { "epimorphism" (onto) }
$$

## Abstracting the notion of "product" and "coproduct"

## Definition

Consider a category $\mathcal{C}$ and a non-empty collection $\left\{B_{i} \mid i \in I\right\}$ of objects.
A product for $\left\{B_{i}\right\}$ is $P \in \operatorname{Ob}(\mathcal{C})$ with a family $\left\{\pi_{i} \in \operatorname{Hom}\left(P, B_{i}\right) \mid i \in I\right\}$ such that:
Given any $A \in \operatorname{Ob}(\mathcal{C})$ and $\left\{f_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A, B_{i}\right) \mid i \in I\right\}$, there is a unique $g \in$ $\operatorname{Hom}_{\mathcal{C}}(A, P)$ such that $\pi_{i} \circ g=f_{i}$ for all $i \in l$.

A coproduct for $\left\{B_{i}\right\}$ is $S \in \operatorname{Ob}(\mathcal{C})$ with $\left\{\iota_{i} \in \operatorname{Hom}\left(A_{i}, S\right) \mid i \in I\right\}$ such that:
Given any $B \in \operatorname{Ob}(\mathcal{C})$ and family $\left\{f_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A_{i}, B\right) \mid i \in I\right\}$, there is a unique $h \in \operatorname{Hom}_{\mathcal{C}}(S, B)$ such that $h \circ \iota_{i}=f_{i}$ for all $i \in l$.


It can be shown that the $\pi_{i}$ 's are epimorphisms, and $\iota_{i}$ 's are monomorphisms.

## A few counterintuitive facts

■ Isomorphisms need not be bijective! In the category Rng, the non-surjective morphism

$$
g: \mathbb{Z} \longrightarrow \mathbb{Q}, \quad g(n)=n
$$

is both mono and an epic.


The equality $f \circ g_{1}=f \circ g_{2}$, implies $g_{1}=g_{2}$, and $h_{1} \circ g=h_{2} \circ g$, forces $h_{1}=h_{2}$.
However, $g$ is not an isomorphism because it does not have a left or a right inverse.

- The same concept across different categories can seem very different!

| Category | Objects | Morphisms | Product | coproduct |
| :---: | :---: | :---: | :---: | :---: |
| Set | sets | functions | Cartesian product | disjoint union |
| Grp | groups | homomorphisms | direct product | free product |
| Ab | abelian groups | homomorphisms | direct product | direct sum |
| Ring | rings w/ | ring homomorphisms | direct product | free product |
| Field | fields | field embeddings | none | none |
| Vect | $\mathbb{F}$-vector spaces | linear functions | direct product | direct sum |
| Top | topological spaces | continuous maps | product topology | disjoint union |

## A functor from Top to Grp

Sometimes, there are structure-preserving maps between categories.


This is an example of a functor.

## A functor from Top to Grp

The fundamental group of $X$ is the group $\pi_{1}(X)$ of all "loops up to equivalence."
A continuous map $f: X \rightarrow Y$ induces a homomorphism

$$
f_{*}: \pi_{1}\left(T^{2}\right) \longrightarrow \pi_{1}\left(S^{1}\right), \quad f_{*}:(a, b) \longmapsto a .
$$

Formally, $\pi_{1}$ is a functor from Top. to Grp, defined as:

$$
\begin{aligned}
\pi_{1}: \mathrm{Ob}\left(\text { Top. }_{\bullet}\right) & \longrightarrow \mathrm{Ob}(\mathrm{Grp}) & \mathcal{F}: \operatorname{Hom}\left(\text { Top. }_{\bullet}\right) & \longrightarrow \operatorname{Hom}(\mathrm{Grp}) \\
X & \longmapsto \pi_{1}(X) & X \xrightarrow{f} Y & \longmapsto \pi_{1}(X) \xrightarrow{f_{*}} \pi_{1}(Y)
\end{aligned}
$$

For arbitrary (pointed) topological spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ :


## Covariant and contravariant functors

## Definition

A (covariant) functor $\mathcal{F}$ from $\mathcal{C}$ to $\mathcal{D}$ is a function that sends

- objects $A$ of $\mathcal{C}$ to objects $\mathcal{F}(A)$ of $\mathcal{D}$,
- morphisms $f: A \rightarrow B$ in $\mathcal{C}$ to morphisms $\mathcal{F}(f): \mathcal{F}(A) \rightarrow \mathcal{F}(B)$ in $D$ satisfying:
- $\mathcal{F}\left(\mathrm{Id}_{A}\right)=\operatorname{ld}_{\mathcal{F}(A)}$ for all $A \in \operatorname{Ob}(\mathcal{C})$
- $\mathcal{F}(g \circ f)=\mathcal{F}(g) \circ \mathcal{F}(f)$ for all morphisms $f: A \rightarrow B$ and $g: B \rightarrow C$.


There is a "dual" type of functor, called contravariant, that reverses the arrows.
That is, they send $A \xrightarrow{f} B$ to $\mathcal{F}(B) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(A)$


## A contravariant function from linear algebra

Let $V \in \mathrm{Ob}\left(\operatorname{Vect}_{\mathbb{R}}\right)$ be an $n$-dimensional vector space.
The dual space $V^{*} \in \mathrm{Ob}\left(\mathrm{Vect}_{\mathbb{R}}\right)$ consists of all linear scalar functions $\ell: V \rightarrow \mathbb{R}$.
Think of:

- elements in $V$ as columns vectors,

$$
\begin{aligned}
& \text { ■ elements in } V^{*} \text { as row vectors. } \\
& \qquad \ell: V \longrightarrow \mathbb{R}, \quad \ell(v)=\underbrace{\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right]}_{\ell \in V^{*}} \underbrace{\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]}_{v \in V}=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} .
\end{aligned}
$$

A linear map $A: V \rightarrow W$ can be represented by an $m \times n$ matrix, where $\operatorname{dim}(W)=m$.
Think of this as left-multiplication by column vectors, $A v=w$ :

$$
A: V \longrightarrow W, \quad \underbrace{\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]}_{A \in \operatorname{Hom}(V, W)} \underbrace{\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]}_{v \in V}=\underbrace{\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right]}_{w \in W} .
$$

## A contravariant function from linear algebra

The transpose is a linear map $A^{t}: W^{*} \rightarrow V^{*}$.
Think of this as right-multiplication by row vectors, $w^{t} A^{t}=v^{t}$ :


Formally, we have a contravariant functor:

$$
\begin{aligned}
\mathcal{F}: \mathrm{Ob}\left(\operatorname{Vect}_{\mathbb{F}}\right) & \longrightarrow \mathrm{Ob}\left(\operatorname{Vect}_{\mathbb{F}}\right) & \mathcal{F}: \operatorname{Hom}\left(\operatorname{Vect}_{\mathbb{F}}\right) & \longrightarrow \operatorname{Hom}\left(\operatorname{Vect}_{\mathbb{F}}\right) \\
V & \longmapsto V^{*} & \stackrel{A}{\mapsto} w & \longmapsto w^{t} \stackrel{A^{*}}{\longmapsto} v^{t}
\end{aligned}
$$

Notice how the arrow on the bottom of the following commutative diagram is reversed; this is contravariance.

## Abelianization, as a functor from Grp to Ab

Consider the functor sending a group $G$ to its abelianization $A \cong G / G^{\prime}=G /[G, G]$ :

$$
\mathcal{F}: \mathrm{Ob}(\mathrm{Grp}) \longrightarrow \mathrm{Ob}(\mathrm{Ab}) \quad \mathcal{F}: \operatorname{Hom}(\mathrm{Grp}) \longrightarrow \operatorname{Hom}(\mathrm{Ab})
$$

$$
G \longmapsto G / G^{\prime} \quad g \mapsto f(g) \quad \longmapsto \quad g G^{\prime} \mapsto f(g) H^{\prime}
$$



## Initial and terminal objects

## Definition

An object $I \in \operatorname{Ob}(\mathcal{C})$ is initial if for each $C_{i} \in \operatorname{Ob}(\mathcal{C})$, there is a unique $\pi_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(I, C_{i}\right)$.
An object $T \in \operatorname{Ob}(\mathcal{C})$ is terminal if for each $C_{i} \in \mathrm{Ob}(\mathcal{C})$, there is a unique $\iota_{i} \in \operatorname{Hom}_{C}\left(C_{i}, T\right)$.

An object that is initial and terminal is called a zero object.

Sometimes, initial objects are called universal or coterminal, and terminal objects are final or couniversal.

| Category | Objects | Initial objects | Terminal objects | Zero objects |
| :---: | :---: | :---: | :---: | :---: |
| Set | sets | $\emptyset$ | every $\{x\}$ | none |
| Grp | groups | $\langle e\rangle$ | $\langle e\rangle$ | $\langle e\rangle$ |
| Ab | abelian groups | $\langle 0\rangle$ | $\langle 0\rangle$ | $\langle 0\rangle$ |
| Rng | rings | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| Ring | rings w/ 1 | $\mathbb{Z}$ | $\{0\}$ | none |
| Field | fields | none | none | none |
| Field $_{p}$ | fields w/ char. $p>0$ | $\mathbb{Z}_{p}$ | none | none |
| Vect $_{\mathbb{F}}$ | $\mathbb{F}$-vector spaces | $\{0\}$ | $\{0\}$ | $\{0\}$ |
| Top $^{\text {topological spaces }}$ | $\emptyset$ | every $\{x\}$ | none |  |

## Initial and terminal objects

## Proposition

Any two initial objects in a category $\mathcal{C}$ are equivalent.

## Proof

Let $I$ and $J$ be initial.
Since $l$ is initial, there is a unique morphism $f \in \operatorname{Hom}_{\mathcal{C}}(I, J)$.
Since $J$ is initial, there is a unique morphism $g \in \operatorname{Hom}_{\mathcal{C}}(J, I)$.
The morphism $g \circ f$ is in $\operatorname{Hom}_{\mathcal{C}}(I, I)$, as is Id, (below, left).


However, since $I$ is initial, there must be a unique morphism in $\operatorname{Hom}_{\mathcal{C}}(I, I)$, so $g \circ f=\operatorname{ld}_{I}$.
Similarly, $f \circ g$ and $I_{J}$ are both in $\operatorname{Hom}_{\mathcal{C}}(J, J)$ (above, right).
By uniqueness, $f \circ g=\operatorname{ld}_{\jmath}$, hence $I \cong J$.

## Uniquess of products

Suppose $\left\{B_{i} \mid i \in I\right\}$ in $\mathcal{C}$ has product $P$, with projections $\pi_{i}: P \rightarrow B_{i}$.
Define a new category $\mathcal{B}$ :

- objects: families of maps $\left\{A \xrightarrow{f_{i}} B_{i}\right\}$
- morphisms: $A \xrightarrow{g} C$ that makes the following diagram commute.

$$
g \in \operatorname{Hom}_{\mathcal{B}}\left(\left(A \xrightarrow{f_{i}} B_{i}, C \xrightarrow{h_{i}} B_{i}\right)\right.
$$



A terminal object in $\mathcal{B}$ is a family $\left\{P \xrightarrow{\pi_{i}} B_{i}\right\}$ such that for any $\left\{A \xrightarrow{f_{i}} B_{i}\right\}$, there exists a unique $g \in \operatorname{Hom}_{\mathcal{C}}(A, P)$ that makes the diagram (left) commute:


That is, the terminal object is the product! Thus, products are unique up to equivalence.

## Uniquess of coproducts and zero morphisms

We can construct an analogus category where the initial object is the coproduct.


$$
h \in \operatorname{Hom}_{\mathcal{A}}\left(A_{i} \xrightarrow{g_{i}} S, A_{i} \xrightarrow{f_{i}} B\right) \quad g \in \operatorname{Hom}_{\mathcal{B}}\left(A \xrightarrow{f_{i}} B_{i}, P \xrightarrow{h_{i}} B_{i}\right)
$$

Though each $\pi_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(P, B_{i}\right)$ need not be epic, there are conditions that guarantee this.

## Definition

Let $\mathcal{C}$ be a category with a zero object, $0 \in \operatorname{Ob}(\mathcal{C})$. The zero morphism $0_{A B} \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ is the composition of the unique maps $A \rightarrow 0 \rightarrow B$.


## Zero morphisms

## Proposition

If $0 \in \operatorname{Ob}(\mathcal{C})$, the projection morphisms $\pi_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(P, B_{i}\right)$ of a product are epimorphisms.

## Proof

Fix $\alpha \in I$, and define the family of maps $\left\{f_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(B_{\alpha}, B_{i}\right) \mid i \in I\right\}$ as

$$
f_{i}: B_{\alpha} \longrightarrow B_{i}, \quad f_{i}= \begin{cases}\operatorname{ld}_{B_{\alpha}}, & i=\alpha \\ 0_{B_{i} 0}, & i \neq \alpha\end{cases}
$$

By the universal property of products, for each $i \in I$, we have:


To show $\pi_{\alpha}$ is epic, we need to verify left-cancelization.
Consider $f, g \in \operatorname{Hom}_{\mathcal{C}}\left(B_{\alpha}, C\right)$ such that $f \circ \pi_{\alpha}=g \circ \pi_{\alpha}$.

## Zero morphisms

## Proposition

If $0 \in \operatorname{Ob}(\mathcal{C})$, the projections $\pi_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(P, B_{i}\right)$ from a product are epimorphisms.

## Proof

It suffices to show that $f=g$.


By the commuativity of the diagram, we have
$f=f \circ \operatorname{ld}_{B_{\alpha}}=f \circ\left(\pi_{\alpha} \circ g_{\alpha}\right)=\left(f \circ \pi_{\alpha}\right) \circ g_{\alpha}=\left(g \circ \pi_{\alpha}\right) \circ g_{\alpha}=g \circ\left(\pi_{\alpha} \circ g_{\alpha}\right)=g \circ \operatorname{ld}_{B_{\alpha}}=g$, whence $\pi_{\alpha}$ is an epimorphism.

## Proposition (HW)

If $0 \in \operatorname{Ob}(\mathcal{C})$, the inclusions $\iota_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(B_{i}, S\right)$ into a coproduct are monomorphisms.

## Free groups

Throughtout, let $S$ be a nonempty set.

## Definition

The free group on $S$ is

$$
F=F_{S}:=\langle S \mid\rangle
$$

That is, $F_{S}$ is generated by $S$, subject to no relations.

We can think of the free groups as groups where:

- elements are words in $T=S \sqcup S^{-1}$, where $S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$.
- the binary operation is concatenation.

The only way to modify words are by substitutions of form $s s^{-1}=1$ and $s^{-1} s=1$.
If $|S|=|T|$, then $F_{S} \cong F_{T}$.
If $|S|=n<\infty$, then $F_{n}:=F_{S}$ is free group on $n$ generators, or the free group of rank $n$.
We'll soon see how every group is a quotient of a free group.
This can be formalized via a couniversal property.

The free group on 2 generators


## $D_{3}$ as a quotient of $F_{2}$




## Free groups

## Definition

A group $F$ is free on $S \neq \emptyset$ if there is a function $\iota: S \rightarrow F$ such that for any other $\theta: S \rightarrow G$, there exists a unique homomorphism $\pi: F \rightarrow G$ such that $\theta=\pi \circ \iota$.


## Proposition

If a free group exists on $S \neq \emptyset$, it is unique up to isomorphism, and $\iota: S \rightarrow F$ is injective.

## Proof

We've seen uniqueness. Suppose $\iota$ is not 1-to-1; take $a \neq b$ in $S$ for which $\iota(a)=\iota(b)$.
Consider the map $\theta: S \longrightarrow \mathbb{Z}, \quad \theta(s)= \begin{cases}1 & s=a \\ 2 & s=b \\ 0 & s \notin\{a, b\} .\end{cases}$
This forces $1=\theta(a)=\pi(\iota(a))=\pi(\iota(b))=\theta(b)=2$, a contradiction.

## Free semigroups

## Definition

A semigroup is a set $X \neq \emptyset$ with associative binary operation.
A homomorphism is a function $f: X \rightarrow Y$ with $f\left(x_{1} x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$.
Let Sgp denote the category of semigroups.
Free semigroups exists, are unique up to isomorphism, the map $\iota: S \rightarrow F$ is injective.


The free semigroup on $S=\{s\}$ is isomorphic to $\mathbb{N}=\{1,2, \ldots$,$\} under addition.$

## Free semigroups

## Proposition

If $S \neq \emptyset$, then there is a free semigroup over $S$.

## Proof

Let $X$ be the set of nonempty words over $S$, under concatenation:
$X=S \cup(S \times S) \cup(S \times S \times S) \cup \cdots, \quad\left(a_{1}, \ldots, a_{n}\right) *\left(b_{1}, \ldots, b_{m}\right)=\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$.
We'll show this is free over $S$, with inclusion map

$$
\iota: S \longrightarrow X, \quad \iota(x)=x
$$

Given a function $\theta: S \rightarrow Y$ to another semigroup, define

$$
\pi: X \longrightarrow Y, \quad \pi:\left(a_{1}, \ldots, a_{n}\right) \longmapsto \theta\left(a_{1}\right) \cdots \theta\left(a_{n}\right)
$$

Exercise. Check that $\pi$ is a semigroup homomorphism, and $\pi \circ \iota=\theta$.


## Free semigroups

## Proposition

If $S \neq \emptyset$, then there is a free semigroup over $S$.

## Proof (contin.)

Given $\theta: S \rightarrow Y$, the function

$$
\pi: X \longrightarrow Y, \quad \pi:\left(a_{1}, \ldots, a_{n}\right) \longmapsto \theta\left(a_{1}\right) \cdots \theta\left(a_{n}\right)
$$

satisfyies $\pi \circ \iota=\theta$.
Uniqueness: Suppose $\sigma: X \rightarrow Y$ also satisfies $\sigma \circ \iota=\theta$. Then

$$
\begin{aligned}
\sigma\left(\left(a_{1}, \ldots, a_{n}\right)\right) & =\sigma\left(\iota\left(a_{1}\right) \cdots \iota\left(a_{n}\right)\right) \\
& =\sigma\left(\iota\left(a_{1}\right)\right) \cdots \sigma\left(\iota\left(a_{n}\right)\right) \\
& =\theta\left(a_{1}\right) \cdots \theta\left(a_{n}\right) \\
& =\pi\left(\iota\left(a_{1}\right)\right) \cdots \pi\left(\iota\left(a_{n}\right)\right) \\
& =\pi\left(\iota\left(a_{1}\right) \cdots \iota\left(a_{n}\right)\right) \\
& =\pi\left(\left(a_{1}, \ldots, a_{n}\right)\right) .
\end{aligned}
$$



Therefore, $X$ satisfies the co-universal property of free semigroups.

## Quotient semigroups

Since semigroups lack an inverse, we don't have kernels, or isomorphism theorems.
But there is a co-universal property of quotient maps.
The group homomorphism $f: G \rightarrow K$ partitions $G$ into cosets of $\operatorname{Ker}(f)$.
If this is coarser than the parition of $G$ into cosets of $N=\operatorname{Ker}(\pi)$, then $f$ factors through $\pi$ :


A relation $R$ on a semigroup $Y$ is well-defined with respect to $*$ if

$$
x R y \text { and } z R w \Longrightarrow x z R y w \text {. }
$$

Let $x R$ be the equivalence class containing $x$, and call

$$
\pi: Y \longrightarrow Y / R, \quad \pi: y \longmapsto y R
$$

the canonical quotient map.
The quotient semigroup of $Y$ is $Y / R$, with $x R \cdot y R:=x y R$.

## Co-universal property of quotient semigroups

## Proposition

The quotient semigroup $Y / R$ satisfies the following co-universal property:
If $f: Y \rightarrow Z$ is a semigroup homomorphism such that $x R y$ implies $f(x)=f(y)$, then $\exists!h: Y / R \rightarrow Z$ such that $f=h \circ \pi$.


## Proof

Existence follows from the definition: $h(y R)=h(\pi(y))=f(y)$, with well-definedness automatic from $x R y \Rightarrow f(x)=f(y)$.

Uniqueness by the cancellation laws, because $\pi$ is surjective.

## Construction of a free group over $S$

Given $S \neq \emptyset$, construct a disjoint set $S^{\prime}$ of "formal inverses":

$$
S^{\prime}=\left\{s^{\prime} \mid s \in S\right\}, \quad T=S \cup S^{\prime} .
$$

The bijection $s \mapsto s^{\prime}$ and inverse $s^{\prime} \mapsto s^{\prime \prime}:=s$ define a bijection $T \rightarrow T$, where $t \mapsto t^{\prime}$.
Let $X$ be the free semigroup on $T \subseteq X$ (under natural inclusion).
Call a homomorphism $\phi: X \rightarrow G$ proper if $\phi\left(s^{\prime}\right)=\phi(s)^{-1}$ for all $s \in S$.
If $\phi$ is proper, then $\phi\left(t^{\prime}\right)=\phi(t)^{-1}$ for all $t \in T$.
The only "relation" in a free group group: $s s^{-1}=s^{-1} s=1$ for all $s \in S \subseteq F$.
We'll construct the this from the free semigroup by forcing $s s^{\prime} t=t$, for all $t \in T \subseteq X$.
If $\phi$ is proper, then

$$
\phi\left(s s^{\prime} t\right)=\phi(s) \phi\left(s^{\prime}\right) \phi(t)=\phi(s) \phi(s)^{-1} \phi(t)=\phi(t)
$$

Define an equivalence relation on $X$ where $x x^{\prime} y R y$ for all $x, y \in X$, where

$$
x R y \text { iff } \phi(x)=\phi(y) \text { for every proper } \phi: X \rightarrow G .
$$

Exercise: this is well-defined, and so $X / R$ is a group.

## Construction of a free group over $S$

We just showed that that $X / R$ is a semigroup. Now'll we'll show it's a group.
We'll write $\bar{x}($ not $x R)$, so $\bar{x} \bar{y}=\overline{x y}$, and $\overline{x^{\prime}}=\bar{x}^{-1}$.
Let $\pi: X \rightarrow X / R$ be the canonical quotient.
Identity. Choose any $s \in S$ and $x \in X$; we claim that $\overline{s s^{\prime}}=1$.
If $\phi: X \rightarrow G$ is proper, then $\phi\left(s s^{\prime} x\right)=\phi(x)$, which means that $x R s s^{\prime} x$ in $X$, thus

$$
\bar{x}=\overline{s s^{\prime} x}=\overline{s s^{\prime}} \cdot \bar{x}, \quad \text { and } \quad \bar{x}=\overline{x s s^{\prime}}=\bar{x} \cdot \overline{s s^{\prime}} .
$$

Thus, $\overline{s s^{\prime}}$ is the identity.
Inverses. Let $x=t_{1} \cdots t_{k} \in X$.
We'll show that the inverse of $\bar{x}$ is $\bar{y}$, where $y=t_{k}^{\prime} \cdots t_{1}^{\prime}$.
If $\phi$ is proper, then

$$
\begin{aligned}
\phi(x y) & =\phi\left(t_{1} \cdots t_{k} t_{k}^{\prime} \cdots t_{1}^{\prime}\right) \\
& =\phi\left(t_{1}\right) \cdots \phi\left(t_{k}\right) \phi\left(t_{k}^{\prime}\right) \cdots \phi\left(t_{1}^{\prime}\right) \\
& =\phi\left(t_{1}\right) \cdots \phi\left(t_{k}\right) \phi\left(t_{k}\right)^{-1} \cdots \phi\left(t_{1}\right)^{-1} \\
& =1_{G}=\phi\left(s s^{\prime}\right) \quad \text { for any } s \in S .
\end{aligned}
$$

Thus $X / R$ is a group.

Showing that our free semigroup quotient $X / R$ is free

## Goal

Given $\iota: S \rightarrow X / R$ defined by $\iota(s)=\bar{s}$, show that for any map $\phi: S \rightarrow G$, there is a unique homomorphism $h: X / R \rightarrow G$ such that $\phi=h \circ \iota$


We'll build up this diagram in "pieces", culminating with the following:


Showing that our free semigroup quotient $X / R$ is free
Extend $\phi: S \rightarrow G$ to a map $\theta: T \longrightarrow G$ by setting $\theta\left(s^{\prime}\right)=\phi(s)^{-1}$.


Applying the co-universal property of free semigroups to $\theta: T \rightarrow G$ gives the following:


Since the homomorphism $f$ is proper, the co-universal property of quotient semigroups gives:


## Showing that our free semigroup quotient $X / R$ is free

We know $\exists!h: X / R \rightarrow G$ such that $f=h \circ \pi$, but not necessarily $\phi=h \circ \iota$.


Suppose $\exists g: X / R \rightarrow G$ such that $\phi=g \circ \iota$. (Need $h=g$.)
We have $h \circ \pi \circ j \circ i=g \circ \pi \circ j \circ i$, and we claim that $h \circ \pi \circ j=g \circ \pi \circ j$.
It is clear that $h(\pi(j(s)))=f(\pi(j(s))$ for all $s \in S$. By construction,

$$
h\left(\pi\left(j\left(s^{\prime}\right)\right)\right)=h\left(\overline{s^{\prime}}\right)=h\left(\bar{s}^{-1}\right)=h(s)^{-1}=g(s)^{-1}=g\left(\bar{s}^{-1}\right)=g\left(\overline{s^{\prime}}\right)=g\left(\pi\left(j\left(s^{\prime}\right)\right)\right) .
$$

Therefore, $\theta=h \circ \pi \circ j=g \circ \pi \circ j$.
By the co-universal property of free semigroups, $\exists!f: X \rightarrow G$ such that $\theta=f \circ j$.
But both $h \circ \pi$ and $g \circ \pi$ satisfy this, and so $f=h \circ \pi=g \circ \pi \Rightarrow h=g$

## Properties of free groups

## Proposition

Suppose $S, U \neq \emptyset$. Then $F_{S} \cong F_{U}$ if and only if $|S|=|U|$.

## Proof

" $\Rightarrow$ " Case 1: $|S|<\infty$.
Each nonempty $R \subseteq S$ defines an index-2 subgroup, the kernel of

$$
f_{R}: F_{S} \longrightarrow \mathbb{Z}_{2}, \quad f_{R}(s)= \begin{cases}0 & s \in R \\ 1 & s \notin R\end{cases}
$$

Since $F_{U}$ has the same number of index-2 subgroups, $2^{|S|}-1=2^{|U|}-1 \Rightarrow|S|=|U|$.
Case 2: $|S|=\infty$.
Let $T=S \subseteq S^{-1}$. Then $\left|F_{S}\right|=|S|$ because.

$$
\left|F_{S}\right| \leq 1+|T|+|T \times T|+|T \times T \times T|+\cdots=\aleph_{0}|T|=|S| .
$$

Reversing roles gives $\left|F_{U}\right|=|U|=|S|=\left|F_{S}\right|$.

## Properties of free groups

## Proposition

Suppose $S, U \neq \emptyset$. Then $F_{S} \cong F_{U}$ if and only if $|S|=|U|$.

## Proof

" $\Leftarrow$ " Fix a bijection $\beta: S \rightarrow U$ and use the co-universal property to get


We can "stack" these diagrams, two ways, to get:


By uniqueness, $g \circ f=\mathrm{Id}_{F_{S}}$ and $f \circ g=\mathrm{Id}_{F_{U}}$, so $f$ and $g$ are inverse isomorphisms.

## Free objects

A functor $\mathcal{F}: \mathcal{C} \rightarrow \mathcal{D}$ is faithful if $\mathcal{F}: \operatorname{Hom}(\mathcal{C}) \rightarrow \operatorname{Hom}(\mathcal{D})$ is injective.
A concrete category is a category $\mathcal{C}$ with a faithful functor $\mathcal{F}: \mathcal{C} \rightarrow$ Set.

## Definition

Let $\mathcal{C}$ be concrete, $F \in \operatorname{Ob}(\mathcal{C})$, and $\iota: S \rightarrow F$ a map of sets, where $S \neq \emptyset$.
Then $F$ is free on $S$ if for any $A \in \operatorname{Ob}(\mathcal{C})$ and $\theta: S \rightarrow A$, there is a unique $f \in \operatorname{Hom}_{\mathcal{C}}(F, A)$ such that $f \circ \phi=\iota$.


Like we did with products, we can construct a category where free objects are initial:


$$
\pi \in \operatorname{Hom}_{\mathcal{A}}(S \xrightarrow{\iota} F, S \xrightarrow{\theta} A)
$$

## Free objects

Let Nil be the category of nilpotent groups.
Suppose $\iota: S \rightarrow F$ is a free object in Nil.
This means that every other nilpotent group $G$ generated by $S$ is a quotient of $F$ :
"if $G$ is nilpotent with set map $f: S \rightarrow G$, then there exists a unique $\pi: F \rightarrow G$ such that $f=\pi \circ ८$."


Suppose $F$ has nilpotency class $n$. Then every quotient has nilpotency class $\leq n$. (Why?)
Thus, if $G=\langle S\rangle$ has nilpotency class $n+1$, then $\nexists \pi: F \rightarrow G$.

## Free objects

Let $\mathrm{Nil}_{\leq n}$ be the category of nilpotent groups of class $\leq n$.
If $G$ is a nilpotent group of class $\leq n$, then $L_{n}(G)=\langle 1\rangle$.

$$
\begin{array}{rcccccc}
L_{1}(G) & = & {\left[G, L_{0}\right]} & = & {[G, G]} & & \\
L_{2}(G) & = & {\left[G, L_{1}\right]} & = & {[G,[G, G]]} & = & \left\langle\left[g_{1}, g_{0}\right] \mid g_{i} \in G\right\rangle \\
L_{3}(G) & = & {\left[G, L_{2}\right]} & = & {[G,[G,[G, G]]]} & = & \left\langle\left[g_{3},\left[g_{1},\left[g_{2},\left[g_{1}, g_{0}\right]\right]\right]\right] \mid g_{i} \in G\right\rangle \\
& \vdots & & \vdots & & \vdots & \\
L_{n}(G) & = & {\left[G, L_{k-1}\right]} & = & {[G,[G, \ldots[G, G]]]} & = & \left\langle\left[g_{n},\left[g_{n-1}, \ldots\left[g_{1}, g_{0}\right]\right]\right] \mid g_{i} \in G\right\rangle
\end{array}
$$

## Proposition

Let $F$ be free on a set $S$. Then $F / L_{n}(F)$ is free in $\mathrm{Nil}_{\leq n}$.
"if $G$ is nilpotent of class $\leq n$ and $f: S \rightarrow G$, then there exists a unique $\pi: F_{n} / L_{n}\left(F_{n}\right) \rightarrow G$ such that $f=\pi \circ \iota . "$


## Free objects

## Proposition

Let $F$ be free on $S$. Then $F / L_{n}(F)$ is free in $\mathrm{Nil}_{\leq n}$.

The existence of $h: F \rightarrow G$ is because $F$ is free on $S$.


Since $G$ has nilpotent class $\leq n$, we have $\operatorname{Ker}(g)=L_{n}(F) \leq \operatorname{Ker}(h)$.
Now, $\pi$ is guaranteed by the co-universal property of quotient maps.
Exercise: Verify that $\pi$ is the unique map satsifying $f=\pi \circ \iota$.

## Direct sums and bases

The direct sum of a family $\left\{A_{i} \mid i \in I\right\}$ of groups is

$$
\bigoplus_{i \in I} A_{i}=\left\{\left(a_{i}\right)_{i \in I} \in \prod_{i \in I} A_{i} \text { with finite support }\right\} .
$$

If all are abelian, let $\mathbf{e}_{j}:=\left(a_{i}\right)_{i \in I}$ with $a_{j}=\delta_{i j}$. Every $x \in \bigoplus A_{i}$ can be written as

$$
x=\sum_{i=1}^{n} a_{i} \mathbf{e}_{i}, \quad a_{i} \in \mathbb{Z}, \quad n \in \mathbb{N}
$$

If $A$ is abelian, the subgroup generated by $X \subseteq S$ are the finite linear combinations:

$$
\langle X\rangle=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid a_{i} \in \mathbb{Z}, x_{i} \in X\right\} .
$$

A basis of $A$ is a subset $X \subseteq A$ for which:

1. $A=\langle X\rangle$.
2. Given distinct $x_{1}, \ldots, x_{n} \in X$,

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0 \quad \Longrightarrow \quad a_{i}=0 \text { for all } i=1, \ldots, n
$$

## Exercise

Given a family $\left\{A_{i} \mid i \in I\right\}$ of abelian groups, $\left\{\mathbf{e}_{i} \mid i \in I\right\}$ is a basis of

$$
\bigoplus_{i \in 1} A_{i}=\left\{a_{1} \mathbf{e}_{1}+\cdots+a_{n} \mathbf{e}_{n} \mid a_{j} \in \mathbb{Z}\right\}=\left\{\sum_{j=1}^{n} a_{j} \mathbf{e}_{j}, a_{j} \in \mathbb{Z}\right\}
$$

## Direct sums and bases

Assuming the axiom of choice, in a vector space, Every generating set has a basis.
This fails for abelian groups; e.g., $\mathbb{Z}=\langle 2,3\rangle$.
Every vector space has a basis, and every $v \neq 0$ is contained in one.
If an abelian group $A$ has an element $x$ of finite order, no basis can contain it.

## Proposition

Let $A$ be an abelian group with basis $X$. Then every $a \in A$ can be written as a unique (finite) linear combination of elements from $X$.

## Proof

The following defines a homomorphism

$$
f: \bigoplus_{i \in I} \mathbb{Z} \longrightarrow A, \quad f: \sum_{j=1}^{n} a_{j} \mathbf{e}_{j} \longmapsto \sum_{j=1}^{n} a_{j} x_{j}
$$

It is surjective by Property (1) of a basis, and has trivial kernel by Property (2).
Each way to write $x$ as a linear combination of the basis elements corresponds to an $f$-preimage of $x$.

Uniqueness follows because $f$ is bijective.

Free abelian groups

## Definition

The free abelian group on $S \neq \emptyset$ is $\bigoplus_{s \in S} \mathbb{Z}$.

## Theorem

Let $S \neq \emptyset$. The group $\bigoplus_{s \in S} \mathbb{Z}$ with $\iota(s)=\mathbf{e}_{s}$ is a free object for $S$ in $\mathbf{A b}$.
That is, given any $f: S \rightarrow A$ there exists a unique $h: \bigoplus_{s} \mathbb{Z} \rightarrow A$ such that $f=h \circ \iota$.


## Proof (sketch)

Existence and uniqueness of the desired function $h$ is constructive:

$$
h\left(\sum_{i=1}^{n} a_{s_{i}} \mathbf{e}_{s_{i}}\right)=\left(\sum_{i=1}^{n} a_{s_{i}} h\left(\mathbf{e}_{s_{i}}\right)\right)=\left(\sum_{i=1}^{n} a_{s_{i}} h\left(\iota\left(s_{i}\right)\right)\right)=\sum_{i=1}^{n} a_{s_{i}} f\left(s_{i}\right) .
$$

Group presentations, formalized

## Definition

For any subset $R \subseteq F_{S}$, the group $G=\langle S \mid R\rangle$ is the quotient $F_{S} / N$ where

$$
N:=\bigcap_{R \leq N_{\alpha} \unlhd F_{S}} N_{\alpha} .
$$

Elements in $R$ are called relators.

## Big idea

The group $\langle S \mid R\rangle$ is the quotient of $F_{S}$ by the smallest normal subgroup containing $R$.

Exercise: show that

$$
G=\left\langle a, b \mid a b=b^{2} a, b a=a^{2} b\right\rangle=\langle 1\rangle .
$$

In terms of Cayley graphs and motfis, this means that


Group presentations, formalized
Given $G_{1}=\left\langle S \mid R_{1}\right\rangle$, define $G_{2}=\left\langle S \mid R_{2}\right\rangle$ by adding relations: $R_{1} \subseteq R_{2}$.
We have two quotient maps,

$$
\pi_{1}: F_{S} \longrightarrow F_{S} / N_{1} \cong G_{1}, \quad \pi_{2}: F_{S} \longrightarrow F_{S} / N_{2} \cong G_{2}
$$

Since $N_{1}=\operatorname{Ker}\left(\pi_{1}\right) \leq \operatorname{Ker}\left(\pi_{2}\right)=N_{2}$, the co-universal property of quotients gives us:


Now, suppose $G_{1}=\left\langle S_{1} \mid R\right\rangle$ and $G_{2}=\left\langle S_{2} \mid R\right\rangle$ with $S_{1} \supseteq S_{2}$.
Defining $R^{\prime}=S_{1} \backslash S_{2}$, we have

$$
G_{1}=\left\langle S_{1} \mid R\right\rangle, \quad G_{2}=\left\langle S_{1} \mid R \cup R^{\prime}\right\rangle
$$

and hence a quotient $G_{1} \rightarrow G_{2}$.

## Proposition

Given $G_{1}=\left\langle S_{1} \mid R_{1}\right\rangle$ and $G_{2}=\left\langle S_{2} \mid R_{2}\right\rangle$ for which $S_{1} \supseteq S_{2}$ and $R_{1} \subseteq R_{2}$, there is a quotient $G_{1} \rightarrow G_{2}$.

## Group presentations, formalized

In many cases, two generating sets that we wish to compare are not subsets of each other.
For example, if $S_{1}=\{a, b, c\}$ and $S_{2}=\{r, f\}$, then $S_{1} \nsupseteq S_{2}$.
However, there is $\theta: S_{1} \rightarrow S_{2}$ that can be thought of as a "relabeling."
Saying that "every relation is $G_{1}$ is a relation in $G_{2}$ " means that every $\theta\left(r_{1}\right)$ is a relator.
We say that such a map $\theta$ respects relations, because it extends to a map $\theta: R_{1} \rightarrow R_{2}$.

## Proposition

Suppose $G_{1}=\left\langle S_{1} \mid R_{1}\right\rangle$ and $G_{2}=\left\langle S_{2} \mid R_{2}\right\rangle$ and the following holds:

1. there exists $\theta: S_{1} \rightarrow S_{2}$ extending to $\theta: R_{1} \rightarrow R_{2}$,
2. $r_{2}:=\theta\left(r_{1}\right)=1$ for all $r \in R_{1}$.

Then there is a quotient $h: G_{1} \rightarrow G_{2}$.


## Group presentations, formalized

Consider the "mystery group"

$$
M=\left\langle a, b \mid a^{4}=b^{2}=1,(a b)^{2}=1\right\rangle,
$$

Visually, we are asking what the largest Cayley graph is given several motifs:


Elements in $M$ can be written as $a^{i} b^{j}$, for $i=\{0,1,2,3\}$ and $j=\{0,1\}$. Thus, $|M| \leq 8$.
We'll show $|M|$ is a multiple of 8 , by constructing a homomorphism

$$
\theta: M \longrightarrow D_{4}, \quad \theta(a)=90^{\circ} \text { CCW rotation, } \quad \theta(b)=\text { horizontal reflection. }
$$

This respect relations because

$$
\begin{aligned}
(\theta(a))^{4} & =0^{\circ} \text { rotation }=\text { identity symmetry, } \quad(\theta(b))^{2}=\text { identity symmetry, } \\
(\theta(a) \theta(b))^{2} & =(\text { another reflection })^{2}=\text { identity symmetry } .
\end{aligned}
$$

Thus, there is a quotient $g: M \rightarrow D_{4}$, and so $M \cong D_{4}$.

## Group presentations, formalized

Every group $G=\langle a, b\rangle$ satisfying $a^{4}=1, b^{2}=1$, and $(a b)^{2}=1$ is a quotient of $D_{4}$.


## Group presentations, formalized

## Overview of the strategy

Given a "mystery" $M=\left\langle S_{1} \mid R_{1}\right\rangle$ that we suspect is a "familiar" $F=\left\langle S_{2} \mid R_{2}\right\rangle$ :

1. Using the relations, show that $|M| \leq|F|$.
2. Identify generators of $F$ that satisfy the relations in $M$, via a "relabling map" $\theta: S_{1} \rightarrow S_{2}$ that extends to $\theta: R_{1} \rightarrow R_{2}$.

Together, $|M| \leq|F|$ and $M \rightarrow F$ forces $M \cong F$.

Consider the group $M=\left\langle a, b, c \mid a^{4}=c^{2}=1, a^{2}=b^{2}, a b=b a, a c=c a, a^{2} b=c b c\right\rangle$.


$$
a^{4}=1
$$



$$
a^{2}=b^{2}
$$


$a b=b a$
$a c=c a$


$a^{2} b=c b c$

Homework: Establish $|M| \leq 16$ by showing that every word in $M$ can be written

$$
a^{i} b^{j} c^{k}, \quad i \in\{0,1,2,3\}, \quad j \in\{0,1\}, \quad k \in\{0,1\}
$$

Then, find a "familiar group" $F$ of order 16 whose generator satisfies these relations.
That will define a quotient $\pi: M \rightarrow F$, and hence $|M| \geq|F|=16$.

## Free products

## Proposition

The coproduct of $\left\{A_{i} \mid i \in I\right\}$ in $\mathbf{A b}$ is the direct sum, $S=\bigoplus_{i} A_{i}$ :


## Proof

Let $C$ be the coproduct of the factors, with $\iota_{j}: A_{j} \hookrightarrow C$.
Consider the group $B \leq C$ generated by the images of all individual factors,

$$
B=\left\langle\iota_{j}\left(A_{j}\right) \mid j \in I\right\rangle, \quad \text { and let } g: B \hookrightarrow C .
$$

Each $b \in B$ can be written as

$$
b=\sum_{j=1}^{k} \iota\left(a_{i j}\right), \quad a_{i j} \in A_{i_{j}},
$$

and so $B \cong S$. Let $f_{j}: A_{j} \hookrightarrow B$ be the natural inclusion map.

## Free products

## Proposition

The coproduct of $\left\{A_{i} \mid i \in I\right\}$ in $\mathbf{A b}$ is the direct sum, $S=\bigoplus_{i} A_{i}$ :


## Proof (cont.)

By the co-universal property of coproducts, we have:


It is clear that $h \circ g=\mathrm{Id}_{B}$. It suffices to show that $g \circ h=\mathrm{Id}_{C}$.

## Free products

## Proposition

The coproduct of $\left\{A_{i} \mid i \in I\right\}$ in $\mathbf{A b}$ is the direct sum, $S=\bigoplus_{i} A_{i}$ :


## Proof (cont.)

Since $\iota_{j}=g \circ f_{j}$ and $f_{j}=h \circ \iota_{j}$, the "small triangles" in the following diagram commute:


It follows that $\iota_{j}=g \circ h \circ \iota_{j}$, but we also have $\iota_{j}=\operatorname{Id}_{C} \circ \iota_{j}$.
By uniqueness from the co-universal property, $g \circ h=\operatorname{ld}_{C}$.

## Free products

The coproduct of two groups $A$ and $B$ in Grp is a construction called the free product.
Given groups $A=\left\langle S_{1} \mid R_{1}\right\rangle$ and $B=\left\langle S_{2} \mid R_{2}\right\rangle$, their free product is

$$
A * B:=\left\langle S_{1} \sqcup S_{2} \mid R_{1} \sqcup R_{2}\right\rangle .
$$

If $A=\langle a \mid\rangle=C_{\infty} \cong \mathbb{Z}$ and $B=\langle b \mid\rangle \cong C_{\infty}$, then $A * B$ is the free group $F_{2}=\langle a, b \mid\rangle$.
If $A$ and $B$ are nontrivial, their free product is infinite, because

$$
a, \quad a b, \quad a b a, \quad a b a b, \quad a b a b a, \quad a b a b a b, \ldots
$$

are all distinct, assuming $a, b \neq 1$.
The free product of the groups $A=\left\langle a \mid a^{2}=1\right\rangle \cong C_{2}$ and $B=\left\langle b \mid b^{2}=1\right\rangle \cong C_{2}$ is

$$
A * B=\left\langle a, b \mid a^{2}=1, b^{2}=1\right\rangle \cong D_{\infty}
$$



## Free products

The free product $C_{3} * C_{2}$ is isomorphic to the projective linear group

$$
\operatorname{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\langle-I\rangle, \quad \text { where } \mathrm{SL}_{2}(\mathbb{Z})=\langle\underbrace{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}_{S}, \underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]}_{T}\rangle
$$

This is in no way obvious from the generators that we've seen, which represent

$$
S: z \longmapsto \frac{0 z-1}{z+0}=-\frac{1}{z}, \quad \text { and } \quad T: z \longmapsto \frac{z+1}{0 z+1}=z+1 .
$$



## Free products

Let's see why the free product $C_{3} * C_{2}$ is isomorphic to the projective linear group

$$
\mathrm{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\langle-I\rangle
$$

Elements of $\mathrm{PSL}_{2}(\mathbb{Z})$ are cosets of $\langle-I\rangle= \pm I$. Let
$\mathrm{SL}_{2}(\mathbb{Z})=\left\langle S, T \mid S^{2}=(S T)^{6}=1\right\rangle, \quad S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], \quad T=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \quad S T=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$,
Then $\operatorname{PSL}_{2}(\mathbb{Z}) \cong\langle A, B\rangle$, where $A= \pm S T$ and $B= \pm S$.


## Free products

A Cayley graph of $\operatorname{PSL}_{2}(\mathbb{Z})=\left\langle A, B \mid A^{3}=B^{2}=1\right\rangle \cong C_{3} * C_{2}$ :


To verify $\mathrm{PSL}_{2}(\mathbb{Z}) \cong C_{3} * C_{2}$, it suffices to show that we can't nontrivially write

$$
I=A^{i_{1}} B^{j_{1}} A^{i_{2}} B^{j_{2}} \cdots A^{i_{m-1}} B^{j_{m-1}} A^{i_{m}}, \quad i_{k} \in\{0,1,2\}, \quad j_{k} \in\{0,1\} .
$$

This will be left as HW.

## Free products

## Definition

The free product of a family $G_{i}=\left\langle S_{i} \mid R_{i}\right\rangle$ of groups is

$$
\underset{i \in I}{*} G_{i}=\left\langle\bigsqcup_{i \in I} S_{i} \mid \bigsqcup_{i \in I} R_{i}\right\rangle, \quad \text { where } \iota_{j}: G_{j} \hookrightarrow{\underset{i \in I}{ }}_{*}^{G_{i}}, \quad \iota_{j}\left(x_{j}\right)=x_{j}
$$

## Proposition

The coproduct of $\left\{G_{i} \mid i \in I\right\}$ in Grp is their free product.
That is, given any $H$ and $\left\{f_{j}: G_{j} \rightarrow H \mid j \in I\right\}$, there is a unique $h: *_{i} G_{i} \rightarrow H$ such that $f_{j}=\iota_{j} \circ h$ for all $j \in I$.


## Fiber coproducts in Grp: free products with amalgamation

Suppose $A$ and $B$ are disjoint circles. Gluing them at a point is called their wedge sum.


Coproduct w/ amalgamation

$\mathrm{A} \vee \mathrm{B}$ : "wedge sum"

In general, we can identify or "glue" two objects along a common subset. Gluing two disks along their boundaries gives a sphere.

Suppose $A \unlhd G_{i}$ for $i=1,2$, with embeddings $\alpha_{i}: A \hookrightarrow G_{i}$.
Goal: Take the the coproduct of $G_{1}$ with $G_{2}$, and "identify" the common subgroup $A$.
We can "force" $\alpha_{1}(a) \in G_{1}$ and $\alpha_{2}(a) \in G_{2}$ (in $G_{1} * G_{2}$ ) to be the same by adding relations

$$
\alpha_{1}(a) \alpha_{2}^{-1}(a)=1, \quad \text { for all } a \in A
$$

and then quotient $A * B$ by the smallest normal subgroup $N$ that contains these relators. The group $G_{1} *_{A} G_{2}:=\left(G_{1} * G_{2}\right) / N$ is the free product of $G_{1}$ and $G_{2}$ amalgamated at $A$.

Fiber coproducts in Set: unions


## Fiber coproducts in Grp: free products with amalgamation

$G_{1} * G_{2}$ is the smallest group in which both $G_{1}$ and $G_{2}$ embeds into "independently."
I.e., for any other $H$ with this property, those embeddings factor through via $G_{1} * G_{2} \rightarrow H$.

For $i=1,2$, let $\iota_{i}: G_{i} \rightarrow\left(G_{1} * G_{2}\right) / N=G_{1} *_{A} G_{2}$ be the map $\iota_{i}: g_{i} \mapsto g_{i} N$.

$G_{1} *_{A} G_{2}$ is the smallest group in which both $G_{1}$ and $G_{2}$ embeds into "independently," while keeping $A$ identified.

The central product, e.g., $\mathrm{DQ}_{8} \cong D_{4} \circ C_{4} \cong Q_{8} \circ C_{4}$, is a direct product with amalgamation.

Fiber coproducts in Grp: free products with amalgamation

Suppose $G_{1}$ and $G_{2}$ embed into $H$ while keeping $A$ identified:


Then $\exists!h: G_{1} *_{A} G_{2} \longrightarrow H$ that makes the following diagram commute:


Fiber coproducts in a general category

## Definition

Let $A, B_{1}, B_{2} \in \operatorname{Ob}(\mathcal{C})$ and $\alpha_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A, B_{i}\right)$ for $i=1,2$. A fiber coproduct (or pushout) for them is a commutative diagram

satisfying the following couniversal property:
For any $D \in \operatorname{Ob}(\mathcal{C})$ and $h_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(B_{i}, D\right)$ such that if $h_{1} \circ \alpha_{1}=h_{2} \circ \alpha_{2}$, there exists a unique $h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$ such that $h \circ \iota_{i}=h_{i}$.


## Fiber coproducts (pushouts)

## Proposition

Pushouts are unique up to equivalence.

## Proof

Suppose we have two pushouts for $A, B_{1}, B_{2}$ :


By the co-universal property, we have $h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(D, C)$ such that:


## Fiber coproducts (pushouts)

## Proposition

Pushouts are unique up to equivalence.

## Proof (cont.)

We can "stack" these diagrams to get:


By uniqueness from the co-universal property, $g \circ h=\mathrm{Id}_{C}$.
Stacking them the other way gives $h \circ g=\operatorname{ld}_{D}$.
Therefore, $h$ and $g$ are inverse isomorphisms, and hence $C \cong D$.

## Fiber coproducts (pushouts)

In Set and Top, pushouts are ordinary unions:


## Siefert van-Kampen theorem

The functor $\pi_{1}:$ Top $\rightarrow$ Grp preserves pushouts.


## The Siefert van-Kampen theorem

$$
\begin{align*}
\pi_{1}(Y \cap Z)=\left\langle a b a^{-1} b^{-1}\right\rangle \cong \mathbb{Z} \\
a_{Y} \\
\pi_{1}(Y)=\langle a, b \mid\rangle
\end{align*}
$$

## Fiber products / pullbacks (HW)

## Definition

Let $A_{1}, A_{2}, B \in \operatorname{Ob}(\mathcal{C})$ and $\alpha_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A_{i}, B\right)$ for $i=1$, 2. A fiber product (or pullback) for them is a commutative diagram

satisfying the following universal property:
For any $Q \in \operatorname{Ob}(\mathcal{C})$ and $h_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(Q, A_{i}\right)$ such that if $\pi_{1} \circ h_{1}=\pi_{2} \circ h_{2}$, there exists a unique $h \in \operatorname{Hom}_{\mathcal{C}}(Q, P)$ such that $h_{i}=\pi_{i} \circ h$.


