## Math 8510, Midterm 2. November 29, 2023

- 1. (12 pts) Write down *complete*, *formal* mathematical definitions of the following terms.
  - (a) A ideal  $P \subseteq R$  is prime if ...
  - (b) A ring homomorphism from R to S is ...
  - (c) The *co-product* of two rings,  $R_1$  and  $R_2$  is ... [Give the "universal property" definition.]
  - (d) The group with presentation  $G = \langle S \mid R \rangle$ , where  $S, R \subseteq F_S$  (the free group on S) is ...
  - (e) An *initial object* of a category C is ...
  - (f) The *free product* of groups  $G_1 = \langle S_1 | R_1 \rangle$  and  $G_2 = \langle S_2 | R_2 \rangle$  is ...
- 2. (8 pts) Let R be a commutative ring with 1. By the correspondence theorem, I is a maximal ideal iff R/I is simple. Show that this is equivalent to R/I being a field. [It suffices to show that R is simple iff R is a field.]

3. (8 pts) Show that every nonzero homomorphism  $\phi: F \to R$  from a field to a ring must be injective.

- 4. (12 pts) Let  $F = \mathbb{F}_{64}$  be a finite field of order  $64 = 2^6$ .
  - (a) Show how to construct F as a quotient ring, R/I. Make sure to explicitly describe what R and I are (give specific generator(s) of I).

(b) Describe how to add and multiply elements in this field, so that an undergraduate student could do it themselves from your directions alone.

- (c) Which abelian group of order 64 is the additive group F isomorphic to?
- (d) List all abelian groups of order 63 up to isomorphism. Circle the one that is isomorphic to the multiplicative group  $F^* = F \setminus \{0\}$ .
- (e) Which finite fields arise as subfields of F.

- 5. (10 pts) Let R be a ring with 1, and G a group.
  - (a) Carefully finish the statement of Zorn's lemma:

"Let  $\mathcal{P} \neq 0$  be...

(b) Use Zorn's lemma to show that every (proper) ideal I of a ring R is contained in a maximal ideal.



(c) Explain why Zorn's lemma fails to show that every proper subgroup of G is contained in a maximal subgroup. An counterexample is the *Prüfer group*, whose ideal lattice is shown above. 6. (8 pts) Let I be an ideal of a commutative ring R. Recall that the *nilradical* of R is the set of nilpotent elements, or equivalently, the intersection of nonzero prime ideals:

$$\operatorname{Nil}(R) := \left\{ x \in R \mid x^n = 0 \text{ for some } n \in \mathbb{N} \right\} = \bigcap_{\substack{0 \neq P \subsetneq R \text{ prime}}} P.$$

Use this fact to show that the following two sets of elements are equal; called the *radical* of I, denoted  $\sqrt{I}$ :

$$\{x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N}\} = \bigcap_{I \subseteq P \subsetneq R \text{ prime}} P.$$

7. (8 pts) Show that  $S_3$  has presentation  $\langle a, b \mid a^2 = b^3 = 1, aba = b^{-1} \rangle$ .

- 8. (9 pts) Let G be a group,  $N \leq G$ , and  $\pi: G \twoheadrightarrow G/N$  the canonical quotient map.
  - (a) Carefully state the *co-universal property of quotient maps*, and include a commutative diagram that illustrates it.

(b) Formally state and prove the co-universal property of the commutator subgroup  $G' = \langle [x, y] : x, y \in G \rangle$  and include a commutative diagram. (Informally, this says that every homomorphism to an abelian group "factors through" G/G').

- 9. (9 pts) Let S be a set,  $F_1$  and  $F_2$  groups, and  $\iota_j \colon S \to F_j$  maps (for j = 1, 2). Include an appropriate commutative diagram with each part below.
  - (a) Carefully define what it means for  $F_1$  to be a free group on S.

(b) Show that if  $(F_1, \iota_1)$  and  $(F_2, \iota_2)$  are both free groups on S, then there is an isomorphism  $\phi: F_1 \to F_2$  such that  $\phi\iota_1 = \iota_2$ .

10. (16 points) Fill in the following blanks. 1. The free group  $F_S$  on  $S \neq \emptyset$  is abelian iff 2. The free product  $G_1 * G_2$  is abelian iff 3. The free product  $G_1 * G_2$  is infinite iff \_\_\_\_\_\_. 4. An example of a subring that is not an ideal in  $\mathbb{Z}[x]$  is . 5. An example of a subgroup of  $\mathbb{Z}[x]$  that is not a subring is . 6. A commutative ring is an integral domain iff the zero ideal is 7. An ideal I is *prime* iff the only zero divisor(s) of R/I is/are 8. An ideal I is primary iff all zero divisor(s) of R/I is/are 9. A example of a primary ideal that is not prime is \_\_\_\_\_\_. 10. The radical of a primary ideal is \_\_\_\_\_\_. 11. A example of a non-maximal prime ideal is \_\_\_\_\_\_. 12. The field of fractions of  $\mathbb{F}_p$  has order . 13. In  $R = \mathbb{Z}$ , the principal ideal  $I = (a) \cap (b)$  is generated by k =14. Every finite integral domain is a(n) \_\_\_\_\_\_. 15. The smallest n > 1 for which there is no field of order n is 16. An example of a skew field is