1. Loosely speaking, the Sylow theorems tell us that (1) all p-subgroups come in a single " p-subgroup tower", (2) the "top" of these towers are a single conjugacy class, and (3) the size of this class is $1 \bmod p$. This is illustrated below with the groups of order 12 .

Using the LMFDB, construct analogous diagrams for the groups of order 18 and 20.
2. After A_{5}, the next smallest nonabelian simple group is $G=\mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$, the invertible 3×3 binary matrices. It has order $168=2^{3} \cdot 3 \cdot 7$, and its reduced subgroup lattice is below.

(a) Color-code the p-subgroups, then draw arrows from each $\operatorname{cl}(H)$ to $\operatorname{cl}(N(H))$.
(b) Show that there is a non-trivial homomorphism $\phi: \mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right) \rightarrow S_{8}$.
(c) Show that this homomorphism must be an embedding, and conclude that the order40320 group S_{8} has at least one subgroup isomorphic to $\mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$.
(d) Show that every such subgroup of S_{8} additionally must be contained in A_{8}.
3. The alternating group A_{6} is the third smallest nonabelian simple group. It has order $6!/ 2=360=2^{3} \cdot 3^{2} \cdot 5$, and 501 subgroups contained in 22 conjugacy classes.

Index $=1$
(a) Distinguish the p-subgroups by colors on the lattice.
(b) For each non-singleton conjugacy class $\mathrm{cl}(H)$, draw an arrow from it to $\operatorname{cl}(N(H))$, the conjugacy class of its normalizer.
(c) Now, let G be an unknown group of order $90=2 \cdot 3^{2} \cdot 5$.
(i) Show that if G has a non-normal Sylow 5-subgroup, then there is be a nontrivial homomorphism $\phi: G \rightarrow S_{6}$.
(ii) Show that if $\phi(G)$ is contained in the simple group A_{6}, then ϕ cannot be injective.
(iii) Explain why this implies that G cannot be simple.
(iv) Give an alternate proof that groups of order 90 are not simple, using the Sylow theorems.
(v) Find all possibilities for n_{2}, n_{3}, and n_{5}, where n_{p} is the number of Sylow p subgroups of G. Then, using GroupNames or LMFDB, make a list of all groups of order 90 , and write down the actual vaules of n_{2}, n_{3}, and n_{5} for each, as well as the isomorphism type of the Sylow 3 -subgroup(s) - either C_{9} or C_{3}^{2}. Does anything surprise you about this?
4. Show that there are no simple groups of the following order:
(i) $p^{n},(n>1)$,
(ii) $p q,(p, q$ prime $)$
(iii) 56 ,
(iv) 108 .
5. Let P be a Sylow p-subgroup of G.
(a) If $P \unlhd H \unlhd G$ for $H \neq P$, show that $G=N H$, where $N=N_{G}(P)$.
(b) Show that if $x, y \in C_{G}(P)$ are conjugate in G, then they are conjugate in $N_{G}(P)$.
6. Let G be a group, not necessarily finite, and let A and B be subgroups of finite index, but not necessarily normal. In particular, we cannot assume that $A B$ is a group, but as an (A, B)-double coset, it is a disjoint union of cosets of A.
(a) Let B act on $S=A \backslash A B=\{A x \mid x \in A B\}$ via the homomorphism

$$
\phi: G \longrightarrow \operatorname{Perm}(S), \quad \phi(g)=\text { the permutation that sends each } A x \mapsto A x g .
$$

Use the orbit-stabilizer theorem to show that $[A: A \cap B]=[A B: B]$.
(b) Show that $[G: A \cap B] \leq[G: A][G: B]$. Give an explicit example of where the inequality is strict.
(c) Show that there is some $N \unlhd G$ contained in both A and B with $[G: N] \leq \infty$.
(d) Use Part (a) and the Sylow theorems to show that there are no simple groups of order $96=2^{5} \cdot 3$. [Hint: First, show that the intersection of two Sylow 2-subgroups must have order 16, and then consider its normalizer.]

