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1. The chutes and ladders diagram of a finite group G is constructed by taking its subgroup
lattice, and adding:

a red arrow for each “maximal central descent” N↘L, where L = [G,N ],

a blue arrow for each “maximal central ascent”, N↗Z, where Z/N = Z(G/N).

An example is shown below for the semiabelian group SA8 =
〈
r, s | r8 = s2 = 1, srs = r5

〉
.
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〈rs〉〈r2, s〉 〈r〉

〈r4, s〉 〈r2s〉 〈r2〉

〈s〉 〈r4s〉 〈r4〉

〈1〉

(a) Construct the chutes and ladders diagram of the following groups: C4 o C4, DQ8,
SA32, Q32, and Q64.

C4 o C4

C4 × C2 C4 × C2 C4 × C2

C4 C4 C4 C4 C4 C4V4

C2 C2 C2

〈1〉

DQ8

C4×C2 D4 C4×C2 D4 C4×C2 D4 Q8

V4 V4 V4 C4 C4 C4 C4

C2 C2 C2 C2 C2 C2 C2

C1

(b) On the subgroups lattices of the groups from Part (a), mark the upper and lower
central series, the derived series, and determine the abelianization.

(c) Two functions f : X → Y and g : Y → X are generalized inverses if f ◦ g ◦ f = f
and g ◦ f ◦ g = g. Show that maximal central ascents and maximal central descents
are generalized inverses on the set of normal subgroups of a groups G.
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SA32

〈rs〉〈r2, s〉 〈r〉

〈r4, s〉 〈r2s〉 〈r2〉
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〈s〉 〈r8s〉 〈r8〉

〈1〉
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2. Let G be a group with nilpotency class n <∞.

(a) Show that every subgroup of G has nilpotency class at most n.

(b) Show that every homomorphic image of G has nilpotency class at most n.

(c) Show that nontrivial normal subgroups of G intersect the center nontrivially.

3. Let G be a finite group whose inner automorphism group Inn(G) is abelian. Show that
G′ ≤ Z(G), and use this to conclude that G is nilpotent.

4. Let G be a finite group in which every maximal subgroup is normal.

(a) Prove that G is nilpotent. [Hint : If not, then take a non-normal Sylow subgroup
P ≤ G, and choose a maximal M ≤ G containing NG(P ).]

(b) Show that every maximal subgroup of G has prime index.

5. Show that if a finite group G has no fully unnormal subgroups, then it is nilpotent. [Hint :
You may use the lemma that if P is a Sylow p-subgroup of H �G, then G = NG(P )H.]

Math 8510 | Abstract Algebra | Fall 2023 | M. Macauley


