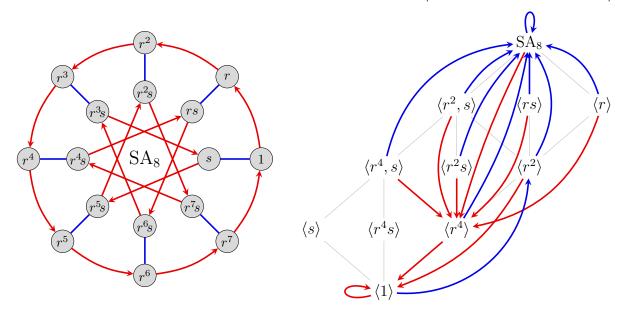
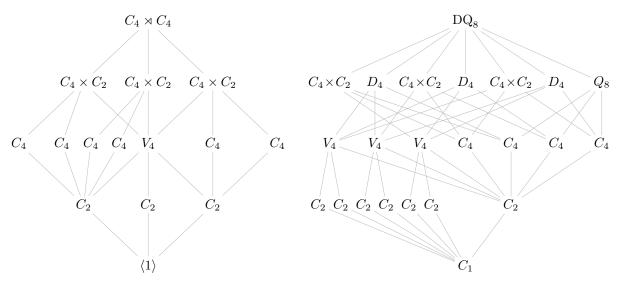
- 1. The *chutes and ladders diagram* of a finite group G is constructed by taking its subgroup lattice, and adding:
 - a red arrow for each "maximal central descent" $N \searrow L$, where L = [G, N],
 - a blue arrow for each "maximal central ascent", $N \nearrow Z$, where Z/N = Z(G/N).

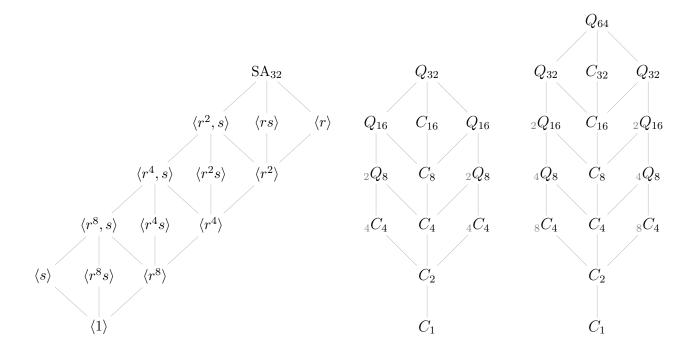
An example is shown below for the semiabelian group $SA_8 = \langle r, s \mid r^8 = s^2 = 1, srs = r^5 \rangle$.



(a) Construct the chutes and ladders diagram of the following groups: $C_4 \rtimes C_4$, DQ_8 , SA_{32} , Q_{32} , and Q_{64} .



- (b) On the subgroups lattices of the groups from Part (a), mark the upper and lower central series, the derived series, and determine the abelianization.
- (c) Two functions $f: X \to Y$ and $g: Y \to X$ are generalized inverses if $f \circ g \circ f = f$ and $g \circ f \circ g = g$. Show that maximal central ascents and maximal central descents are generalized inverses on the set of normal subgroups of a groups G.



- 2. Let G be a group with nilpotency class $n < \infty$.
 - (a) Show that every subgroup of G has nilpotency class at most n.
 - (b) Show that every homomorphic image of G has nilpotency class at most n.
 - (c) Show that nontrivial normal subgroups of G intersect the center nontrivially.
- 3. Let G be a finite group whose inner automorphism group Inn(G) is abelian. Show that $G' \leq Z(G)$, and use this to conclude that G is nilpotent.
- 4. Let G be a finite group in which every maximal subgroup is normal.
 - (a) Prove that G is nilpotent. [*Hint*: If not, then take a non-normal Sylow subgroup $P \leq G$, and choose a maximal $M \leq G$ containing $N_G(P)$.]
 - (b) Show that every maximal subgroup of G has prime index.
- 5. Show that if a finite group G has no fully unnormal subgroups, then it is nilpotent. [Hint: You may use the lemma that if P is a Sylow p-subgroup of $H \leq G$, then $G = N_G(P)H$.]