1. Construct the Cayley tables, Cayley graphs, and subring lattices of the finite field $\mathbb{F}_{9} \cong$ $\mathbb{Z}_{3}[x] /\left(x^{2}+x+2\right)$. Examples for the finite fields

$$
\mathbb{F}_{4} \cong \mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right) \quad \text { and } \quad \mathbb{F}_{8} \cong \mathbb{Z}_{2}[x] /\left(x^{3}+x+1\right)
$$

are shown below.

2. Let $f: R \rightarrow S$ be a ring homomorphism between commutative rings.
(a) If f is surjective and I is an ideal of R, show that $f(I)$ is an ideal of S.
(b) Show that Part (a) is not true in general when f is not surjective.
(c) Show that if f is surjective and R is a field, then S is a field as well.
3. Use Zorn's lemma to show that the ring \mathbb{R} contains a subring A containing 1 that is maximal with respect to the property that $1 / 2 \notin A$.
4. Let R be a commutative ring with unity.
(a) Show that if x is contained in every maximal ideal, then $1+x$ is a unit.
(b) A ring is local if it has a unique maximal ideal. Show that R is local if and only if the non-units form an ideal.
(c) Characterize units and maximal ideals of the following ring, where p is a fixed prime.

$$
R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z},(a, b)=1, p \nmid b\right\} \subseteq \mathbb{Q}
$$

5. Let R be a commutative ring with 1 . The radical of an ideal $I \subseteq R$ is the set

$$
\sqrt{I}=\left\{x \in R \mid x^{n} \in I \text { for some } n \in \mathbb{N}\right\}
$$

and I is a radical ideal if $I=\sqrt{I}$. An ideal $I \subsetneq R$ is primary if $a b \in I$ implies $a \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$.
(a) Show that an ideal I is prime if and only if it is primary and radical.
(b) Show that the radical of a primary ideal must be prime.
(c) Show that I is primary if and only if all zero-divisors in R / I are nilpotent.
(d) Give an example to show that, in general, there are primary ideals which are not prime powers.

