1. Construct the Cayley tables, Cayley graphs, and subring lattices of the finite field $\mathbb{F}_9 \cong \mathbb{Z}_3[x]/(x^2 + x + 2)$. Examples for the finite fields

$$\mathbb{F}_4 \cong \mathbb{Z}_2[x]/(x^2+x+1)$$
 and $\mathbb{F}_8 \cong \mathbb{Z}_2[x]/(x^3+x+1)$

are shown below.

 \times

1

x

x+1

1

1

x

x+1

x

x

x+1

1

x+1

x+1

1

x

×	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
1	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	x ² +x+1
x	x	x^2	$x^2 + x$	x+1	1	x ² +x+1	$x^2 + 1$
x+1	x+1	$x^2 + x$	$x^2 + 1$	x ² +x+1	x^2	1	x
x^2	x^2	x+1	$x^{2}+x+1$	$x^2 + x$	x	$x^2 + 1$	1
$x^2 + 1$	$x^2 + 1$	1	x^2	x	x ² +x+1	x+1	$x^2 + x$
$x^2 + x$	$x^2 + x$	x ² +x+1	1	$x^2 + 1$	x+1	x	x^2
x ² +x+1	x ² +x+1	$x^2 + 1$	x	1	$x^2 + x$	x^2	x + 1

Math 8510 | Abstract Algebra | Fall 2023 | M. Macauley

- 2. Let $f: R \to S$ be a ring homomorphism between commutative rings.
 - (a) If f is surjective and I is an ideal of R, show that f(I) is an ideal of S.
 - (b) Show that Part (a) is not true in general when f is not surjective.
 - (c) Show that if f is surjective and R is a field, then S is a field as well.
- 3. Use Zorn's lemma to show that the ring \mathbb{R} contains a subring A containing 1 that is maximal with respect to the property that $1/2 \notin A$.
- 4. Let R be a commutative ring with unity.
 - (a) Show that if x is contained in every maximal ideal, then 1 + x is a unit.
 - (b) A ring is *local* if it has a unique maximal ideal. Show that R is local if and only if the non-units form an ideal.
 - (c) Characterize units and maximal ideals of the following ring, where p is a fixed prime.

$$R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ (a, b) = 1, \ p \nmid b \right\} \subseteq \mathbb{Q},$$

5. Let R be a commutative ring with 1. The *radical* of an ideal $I \subseteq R$ is the set

$$\sqrt{I} = \{ x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N} \},\$$

and I is a radical ideal if $I = \sqrt{I}$. An ideal $I \subsetneq R$ is primary if $ab \in I$ implies $a \in I$ or $b^n \in I$ for some $n \in \mathbb{N}$.

- (a) Show that an ideal I is prime if and only if it is primary and radical.
- (b) Show that the radical of a primary ideal must be prime.
- (c) Show that I is primary if and only if all zero-divisors in R/I are nilpotent.
- (d) Give an example to show that, in general, there are primary ideals which are not prime powers.