- 1. Let R be a commutative ring with 1. In the first two problems, we will define several different "radicals" of an ideal I.
 - (a) The radical of $I \subseteq R$ is the set

$$\sqrt{I} := \{ x \in R \mid x^n \in I \text{ for some } n \in \mathbb{N} \},\$$

and I is a radical ideal if $\sqrt{I} = I$.

- (i) Show that \sqrt{I} is an ideal containing I.
- (ii) Find the radicals of all ideals of the rings $\mathbb{Z}_6 \times \mathbb{Z}_4$, $\mathbb{Z}_8 \times \mathbb{Z}_2$, $\mathbb{Z}_6 \times \mathbb{Z}_2$, and \mathbb{Z}_{24} . Denote these on the subring lattices by drawing an arrow from each I to \sqrt{I} . Three of these are shown below; see HW 11 for the fourth.

- (b) An element $a \in R$ is *nilpotent* if $a^n = 0$ for some $n \ge 1$. The *nilradical* of R is $Nil(R) := \sqrt{0}$, the set of nilpotent elements. In class, we showed that this is the intersection of all prime ideals of R.
 - (i) If $u \in R$ is a unit and $a \in R$ is nilpotent, show that u + a is a unit.
 - (ii) Show that $R/\operatorname{Nil}(R)$ has no nonzero nilpotent elements.
 - (iii) Show that $\operatorname{Nil}(R/I) = \sqrt{I}/I$.
 - (iv) Show that \sqrt{I} is the intersection of all *prime ideals* that contain *I*.
- 2. The Jacobson radical of an ideal I, denoted jac(I), is the intersection of all maximal ideals that contain I. The Jacobson radical of R is Jac(R) := jac(0), the intersection of all maximal ideals of R.
 - (a) Show that $\sqrt{I} \subseteq \text{jac}(I)$ and $\text{Nil}(R) \subseteq \text{Jac}(R)$.
 - (b) Show that

 $\operatorname{Jac}(R) = \{ r \in R \mid 1 - rx \text{ is a unit for all } x \in R \}.$

(c) Determine $R/\operatorname{Jac}(R)$ for each of the rings $\mathbb{Z}_6 \times \mathbb{Z}_4$, $\mathbb{Z}_8 \times \mathbb{Z}_2$, $\mathbb{Z}_6 \times \mathbb{Z}_2$, and \mathbb{Z}_{24} .

3. Let R be a commutative ring with 1, and $D \subseteq R$ a multiplicatively closed subset containing no zero divisors. Consider the following set and equivalence relation \sim :

$$R \times D = \{ (r, d) \mid r \in R, d \in D \}, \qquad (r_1, d_1) \sim (r_2, d_2) \iff r_1 d_2 = r_2 d_1$$

- (a) Show that \sim is an equivalence relation.
- (b) Let r/d denote the equivalence class containing (r, d), and the set of equivalence classes by $D^{-1}R$. Define addition and subtraction as follows:

$$\frac{r_1}{d_1} + \frac{r_2}{d_2} := \frac{r_1 d_2 + r_2 d_1}{d_1 d_2} \quad \text{and} \quad \frac{r_1}{d_1} \times \frac{r_2}{d_2} := \frac{r_1 r_2}{d_1 d_2}.$$

Show that these operations are well-defined.

- (c) Show that the additive and multiplicative identities are 0/d and d/d, for any $d \in D$, and that the multiplicative inverse of r/d, if it exists, is $(r/d)^{-1} = d/r$.
- (d) If $d \in D$, show that $\{rd/d \mid r \in R\}$ is a subring of $D^{-1}R$ and that

$$R \longrightarrow D^{-1}R, \qquad r \longmapsto rd/d$$

is a injective homomorphism, therefy identifying R with a subring of $D^{-1}R$.

- (e) Under this identification, show that every $d \in D$ gets mapped to a unit in $D^{-1}R$.
- (f) Show that if $f: R \hookrightarrow S$ is an embedding to a commutative ring with 1, such that f(d) is a unit, for every $d \in D$, then there is a unique ring homomorphism $h: D^{-1}R \hookrightarrow S$ such that $h \circ \iota = f$.

- 4. Let \mathbb{F} be a field.
 - (a) Show that there is a bijective correspondence between maximal ideals of $\mathbb{F}[x]$ and monic irreducible polynomials in $\mathbb{F}[x]$.
 - (b) Show that if $M \subsetneq \mathbb{Z}[x]$ is a maximal ideal, then $M \bigcap \mathbb{Z} = (p)$ for some prime $p \neq 0$.
 - (c) Show that there is a bijective correspondence between maximal ideals of $\mathbb{Z}[x]$ that contain p and monic irreducible polynomials in $\mathbb{Z}_p[x]$.
 - (d) Characterize all maximal ideals of $\mathbb{Z}[x]$.