1. Let R be a commutative ring with 1 . In the first two problems, we will define several different "radicals" of an ideal I.
(a) The radical of $I \subseteq R$ is the set

$$
\sqrt{I}:=\left\{x \in R \mid x^{n} \in I \text { for some } n \in \mathbb{N}\right\}
$$

and I is a radical ideal if $\sqrt{I}=I$.
(i) Show that \sqrt{I} is an ideal containing I.
(ii) Find the radicals of all ideals of the rings $\mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{8} \times \mathbb{Z}_{2}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and \mathbb{Z}_{24}. Denote these on the subring lattices by drawing an arrow from each I to \sqrt{I}. Three of these are shown below; see HW 11 for the fourth.

(b) An element $a \in R$ is nilpotent if $a^{n}=0$ for some $n \geq 1$. The nilradical of R is $\operatorname{Nil}(R):=\sqrt{0}$, the set of nilpotent elements. In class, we showed that this is the intersection of all prime ideals of R.
(i) If $u \in R$ is a unit and $a \in R$ is nilpotent, show that $u+a$ is a unit.
(ii) Show that $R / \operatorname{Nil}(R)$ has no nonzero nilpotent elements.
(iii) Show that $\operatorname{Nil}(R / I)=\sqrt{I} / I$.
(iv) Show that \sqrt{I} is the intersection of all prime ideals that contain I.
2. The Jacobson radical of an ideal I, denoted $\operatorname{jac}(I)$, is the intersection of all maximal ideals that contain I. The Jacobson radical of R is $\operatorname{Jac}(R):=\operatorname{jac}(0)$, the intersection of all maximal ideals of R.
(a) Show that $\sqrt{I} \subseteq \operatorname{jac}(I)$ and $\operatorname{Nil}(R) \subseteq \operatorname{Jac}(R)$.
(b) Show that

$$
\operatorname{Jac}(R)=\{r \in R \mid 1-r x \text { is a unit for all } x \in R\} .
$$

(c) Determine $R / \operatorname{Jac}(R)$ for each of the rings $\mathbb{Z}_{6} \times \mathbb{Z}_{4}, \mathbb{Z}_{8} \times \mathbb{Z}_{2}, \mathbb{Z}_{6} \times \mathbb{Z}_{2}$, and \mathbb{Z}_{24}.
3. Let R be a commutative ring with 1 , and $D \subseteq R$ a multiplicatively closed subset containing no zero divisors. Consider the following set and equivalence relation \sim :

$$
R \times D=\{(r, d) \mid r \in R, d \in D\}, \quad\left(r_{1}, d_{1}\right) \sim\left(r_{2}, d_{2}\right) \Leftrightarrow r_{1} d_{2}=r_{2} d_{1}
$$

(a) Show that \sim is an equivalence relation.
(b) Let r / d denote the equivalence class containing (r, d), and the set of equivalence classes by $D^{-1} R$. Define addition and subtraction as follows:

$$
\frac{r_{1}}{d_{1}}+\frac{r_{2}}{d_{2}}:=\frac{r_{1} d_{2}+r_{2} d_{1}}{d_{1} d_{2}} \quad \text { and } \quad \frac{r_{1}}{d_{1}} \times \frac{r_{2}}{d_{2}}:=\frac{r_{1} r_{2}}{d_{1} d_{2}}
$$

Show that these operations are well-defined.
(c) Show that the additive and multiplictive identities are $0 / d$ and d / d, for any $d \in D$, and that the multiplicative inverse of r / d, if it exists, is $(r / d)^{-1}=d / r$.
(d) If $d \in D$, show that $\{r d / d \mid r \in R\}$ is a subring of $D^{-1} R$ and that

$$
R \longrightarrow D^{-1} R, \quad r \longmapsto r d / d
$$ is a injective homomorphism, therefy identifying R with a subring of $D^{-1} R$.

(e) Under this identification, show that every $d \in D$ gets mapped to a unit in $D^{-1} R$.
(f) Show that if $f: R \hookrightarrow S$ is an embedding to a commutative ring with 1 , such that $f(d)$ is a unit, for every $d \in D$, then there is a unique ring homomorphism $h: D^{-1} R \hookrightarrow S$ such that $h \circ \iota=f$.

4. Let \mathbb{F} be a field.
(a) Show that there is a bijective correspondence between maximal ideals of $\mathbb{F}[x]$ and monic irreducible polynomials in $\mathbb{F}[x]$.
(b) Show that if $M \subsetneq \mathbb{Z}[x]$ is a maximal ideal, then $M \bigcap \mathbb{Z}=(p)$ for some prime $p \neq 0$.
(c) Show that there is a bijective correspondence between maximal ideals of $\mathbb{Z}[x]$ that contain p and monic irreducible polynomials in $\mathbb{Z}_{p}[x]$.
(d) Characterize all maximal ideals of $\mathbb{Z}[x]$.

