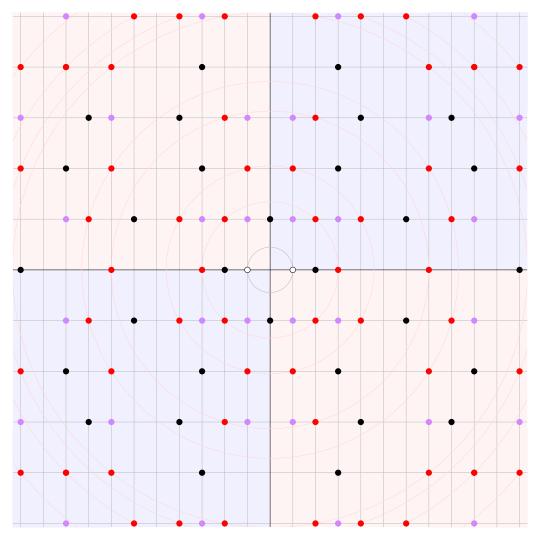
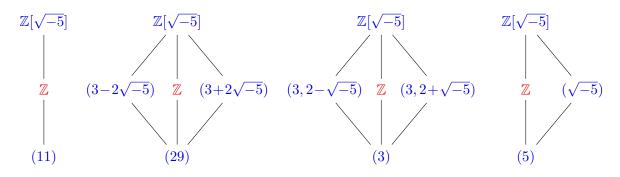
1. A picture illustrating the quadratic integers $R_{-5} = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ as a subring of \mathbb{C} is shown below, with the primes in black, and non-prime irreducibles colored.



- (a) Create an analogous picture for the ring $R_{-6} = \mathbb{Z}[\sqrt{-6}]$. First make a blank diagram with the norms of the quadratic integers labeled at each corresponding lattice point.
- (b) Find primes $p \in \mathbb{Z}$ that in R_{-6} are inert, split (both reducible and irreducible), and ramified. Illustrate this with subring lattices. Examples for R_{-5} are shown below.

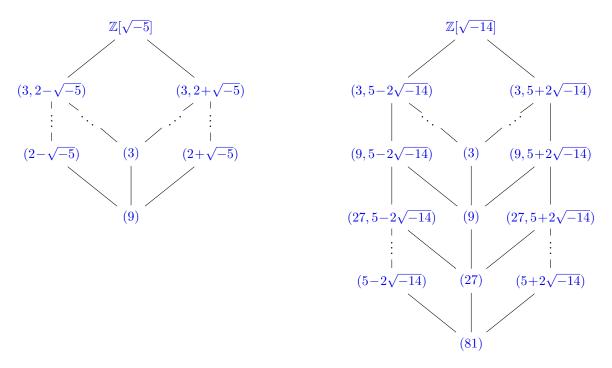


(c) Give an elementary characterization of non-prime irreducibles in R_{-6} .

- 2. Prove that if m = -3, -7, or -11, then R_m is Euclidean with d(r) = |N(r)| for all nonzero $r \in R_m$. [*Hint*: Mimic the proof of the same result for m = -2, -1, 2, and 3, but choose $d \in \mathbb{Z}$ nearest to 2t and then $c \in \mathbb{Z}$ so that c is as near to 2s as possible with $c \equiv d \pmod{2}$, then set $q = (c + d\sqrt{m})/2$.]
- 3. Suppose $P \neq 0$ is a prime ideal in the ring R_m of quadratic integers.
 - (a) Show that $P \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z} , so $P \cap \mathbb{Z} = (p)$ for some prime p in \mathbb{Z} .
 - (b) Set $I = pR_m \subseteq P$ and form the quotient ring R/I. Show that R/I, as an additive group, is generated by two elements of finite order; hence R/I is finite.
 - (c) Show that there is an epimorphism $R/I \rightarrow R/P$ and conclude that R/P is finite.
 - (d) Conclude that every prime ideal in R_m is maximal.
- 4. The class group of the quadratic integer ring R_m measures the extent to which unique factorization fails. Two examples of this,

$$3^{2} = (2 + \sqrt{-5})(2 - \sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}], \qquad 3^{4} = (5 + 2\sqrt{-14})(5 - 2\sqrt{-14}) \in \mathbb{Z}[\sqrt{-14}],$$

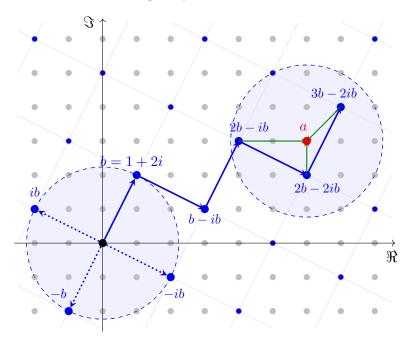
can be visualized in the lattices of ideas as follows:



The class groups of these rings are $\operatorname{Cl}(\mathbb{Z}[\sqrt{-5}]) \cong C_2$ and $\operatorname{Cl}(\mathbb{Z}[\sqrt{-14}]) \cong C_4$, respectively. Create an analogous lattice for the ring $R_{-23} = \mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]$, whose class group is C_3 . It is helpful to note the following product of ideals:

 $(2,\omega)(2,\bar{\omega}) = (2),$ and $(2,\omega)^3 = (2-\omega),$ where $w = \frac{-1+\sqrt{-23}}{2}.$

- 5. If the quadratic integer ring R_m is a Euclidean domain, then for every nonzero $a, b \in R$, the division algorithm can be used to find $r, q \in R$ such that $a = bq + r, 0 \leq N(r) < N(b)$.
 - (a) The following visual shows all three ways to write a = bq+r in the Gaussian integers, for a = 6 + 3i and b = 1 + 2i. Carry out the division algorithm for a = 9 + 8i and b = 3 + i, and create an analogous picture to illustrate it.



(b) The ring $R_{-5} = \mathbb{Z}[\sqrt{-5}]$ is *not* Euclidean, and the following visual demonstrates how the division algorithm fails for a = 5 and $b = 2 + \sqrt{-5}$. Find a and b in $R_{-6} = \mathbb{Z}[\sqrt{-6}]$ that confirms that it too is not Euclidean, and construct an analogous visual.

