1. An element $e \in R$ in a commutative ring is called an idempotent if $e^{2}=e$, and two nonzero idempotents e_{1}, e_{2} are called an orthogonal pair if $e_{1}+e_{2}=1$ and $e_{1} e_{2}=0$. Show that the following are equivalent:
(i) R contains an idempotent different from 0 and 1 .
(ii) R contains an orthogonal pair of idempotents.
(iii) $R \cong R_{1} \times R_{2}$ for some rings R_{1} and R_{2}.
2. Let I be an ideal of $R[x]$, where R is an integral domain, and define

$$
I(m)=\left\{a_{m} \mid f(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0} \in I\right\} \cup\{0\} \unlhd R .
$$

In this problem, you will verify a few lemmas needed to establish Hilbert's basis theorem, that were left as exercises. The following picture summarizes our proof from class.

(a) Prove the following, for all $m \in \mathbb{N}$.
(i) $I(m)$ is an ideal of R.
(ii) $I(m) \subseteq I(m+1)$.
(iii) $I \subseteq J$, then $I(m) \subseteq J(m)$.

Do any of these three results use the assumption that R has unity?
(b) Modify our proof to establish Hilbert's basis theorem for formal power series. That is, show that if R is Noetherian, then $R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is Noetherian as well.
3. Solutions to the following three systems are guaranteed by the Sunzi remainder theorem.
(a) Solve the congruences

$$
x \equiv 1 \quad(\bmod 8), \quad x \equiv 3 \quad(\bmod 7), \quad x \equiv 9 \quad(\bmod 11)
$$

simultaneously for x in the ring \mathbb{Z} of integers.
(b) Solve the congruences

$$
x \equiv i \quad(\bmod i+1), \quad x \equiv 1 \quad(\bmod 2-i), \quad x \equiv 1+i \quad(\bmod 3+4 i)
$$

simultaneously for x in the ring $R_{-1}=\mathbb{Z}[i]$ of Gaussian integers.
(c) Solve the congruences

$$
f(x) \equiv 1 \quad(\bmod x-1), \quad f(x) \equiv x \quad\left(\bmod x^{2}+1\right), \quad f(x) \equiv x^{3} \quad(\bmod x+1)
$$ simultaneously for $f(x)$ in $F[x]$, where F is a field in which $1+1 \neq 0$.

4. Consider the following rings R_{i}, for $i=1, \ldots, 6$, which are additionally \mathbb{C}-vector spaces:

$$
\begin{aligned}
& R_{1}=\mathbb{C}[x] /\left(x^{3}-1\right) \\
& R_{2}=\mathbb{C} \times \mathbb{C} \times \mathbb{C} \\
& R_{3}=\text { the ring of upper triangular } 2 \times 2 \text { matrices over } \mathbb{C} \\
& R_{4}=\mathbb{C}[x] /(x-1) \times \mathbb{C}[x] /(x+i) \times \mathbb{C}[x] /(x-i) \\
& R_{5}=\mathbb{C}[x] /\left(x^{2}+1\right) \times \mathbb{C}[x] /(x-1) \\
& R_{6}=\mathbb{C}[x] /(x+1)^{2} \times \mathbb{C}[x] /(x-1) .
\end{aligned}
$$

(a) Compute the dimension of each R_{i} as a \mathbb{C}-vector space by giving an explicit basis.
(b) Partition the rings R_{1}, \ldots, R_{6} into isomorphism classes.
5. For a fixed $a \in R$, denote the polynomial evaluation map by

$$
\phi_{a}: R[x] \longrightarrow R, \quad \phi_{a}: f(x) \longmapsto f(a) .
$$

(a) If $I=\left(3, x^{2}+1\right)$ in $\mathbb{Z}[x]$, show that $\phi_{a}(I)=\mathbb{Z}$.
(b) Show by example how Part (c) can fail if 3 is replaced with a different odd prime p.
(c) Given a polynomal, $f(x) \in R[x]$, substituting $a \in R$ for x determines a polynomial function $f: R \rightarrow R$, where $a \mapsto f(a)$. Show that if R is an infinite integral domain, then the mapping $f(x) \mapsto f$ assiging to each polynomial in $R[x]$ to its corresponding polynomial function is $1-1$.

