- 1. An element $e \in R$ in a commutative ring is called an *idempotent* if $e^2 = e$, and two nonzero idempotents e_1, e_2 are called an *orthogonal pair* if $e_1 + e_2 = 1$ and $e_1e_2 = 0$. Show that the following are equivalent:
 - (i) R contains an idempotent different from 0 and 1.
 - (ii) R contains an orthogonal pair of idempotents.
 - (iii) $R \cong R_1 \times R_2$ for some rings R_1 and R_2 .
- 2. Let I be an ideal of R[x], where R is an integral domain, and define

$$I(m) = \{a_m \mid f(x) = a_m x^m + \dots + a_1 x + a_0 \in I\} \cup \{0\} \leq R.$$

In this problem, you will verify a few lemmas needed to establish Hilbert's basis theorem, that were left as exercises. The following picture summarizes our proof from class.

- (a) Prove the following, for all $m \in \mathbb{N}$.
 - (i) I(m) is an ideal of R.
 - (ii) $I(m) \subseteq I(m+1)$.
 - (iii) $I \subseteq J$, then $I(m) \subseteq J(m)$.

Do any of these three results use the assumption that R has unity?

(b) Modify our proof to establish Hilbert's basis theorem for formal power series. That is, show that if R is Noetherian, then $R[[x_1, \ldots, x_n]]$ is Noetherian as well.

- 3. Solutions to the following three systems are guaranteed by the Sunzi remainder theorem.
 - (a) Solve the congruences

 $x \equiv 1 \pmod{8}, \qquad x \equiv 3 \pmod{7}, \qquad x \equiv 9 \pmod{11}$

simultaneously for x in the ring \mathbb{Z} of integers.

(b) Solve the congruences

 $x \equiv i \pmod{i+1}, \qquad x \equiv 1 \pmod{2-i}, \qquad x \equiv 1+i \pmod{3+4i}$

simultaneously for x in the ring $R_{-1} = \mathbb{Z}[i]$ of Gaussian integers.

(c) Solve the congruences

$$f(x) \equiv 1 \pmod{x-1}, \qquad f(x) \equiv x \pmod{x^2+1}, \qquad f(x) \equiv x^3 \pmod{x+1}$$

simultaneously for f(x) in F[x], where F is a field in which $1 + 1 \neq 0$.

- 4. Consider the following rings R_i , for i = 1, ..., 6, which are additionally \mathbb{C} -vector spaces: $R_1 = \mathbb{C}[x]/(x^3 - 1)$ $R_2 = \mathbb{C} \times \mathbb{C} \times \mathbb{C}$ $R_3 =$ the ring of upper triangular 2 × 2 matrices over \mathbb{C} $R_4 = \mathbb{C}[x]/(x - 1) \times \mathbb{C}[x]/(x + i) \times \mathbb{C}[x]/(x - i)$ $R_5 = \mathbb{C}[x]/(x^2 + 1) \times \mathbb{C}[x]/(x - 1)$ $R_6 = \mathbb{C}[x]/(x + 1)^2 \times \mathbb{C}[x]/(x - 1).$
 - (a) Compute the dimension of each R_i as a \mathbb{C} -vector space by giving an explicit basis.
 - (b) Partition the rings R_1, \ldots, R_6 into isomorphism classes.
- 5. For a fixed $a \in R$, denote the polynomial *evaluation map* by

$$\phi_a \colon R[x] \longrightarrow R, \qquad \phi_a \colon f(x) \longmapsto f(a).$$

- (a) If $I = (3, x^2 + 1)$ in $\mathbb{Z}[x]$, show that $\phi_a(I) = \mathbb{Z}$.
- (b) Show by example how Part (c) can fail if 3 is replaced with a different odd prime p.
- (c) Given a polynomial, $f(x) \in R[x]$, substituting $a \in R$ for x determines a polynomial function $f: R \to R$, where $a \mapsto f(a)$. Show that if R is an infinite integral domain, then the mapping $f(x) \mapsto f$ assigns to each polynomial in R[x] to its corresponding polynomial function is 1–1.