Supplemental material for Math 8510, HW 13

\#1: The norms of some quadradic integers in the ring $R_{-6}=\mathbb{Z}[\sqrt{-6}]=$ $\{a+b \sqrt{-6} \mid a, b \in \mathbb{Z}\}$.
\#1: Some primes and non-prime irreducibles in the ring $R_{-6}=\mathbb{Z}[\sqrt{-6}]=$ $\{a+b \sqrt{-6} \mid a, b \in \mathbb{Z}\}$ of quadratic integers. Ones with a ramified factor are in purple.

$\# 5 \mathbf{(a)}$: The division algorithm in the Gaussian integers $R_{-1}=\mathbb{Z}[i]=\{a+b i \mid$ $a, b \in \mathbb{Z}\}$ showing the possible quotients q and remainders r, upon dividing $b=3+i$ into $a=9+8 i$

$\# \mathbf{5}(\mathbf{b})$: An explicit example of $a, b \in R_{-6}=\mathbb{Z}[\sqrt{-6}]=\{a+b \sqrt{-6} \mid a, b \in \mathbb{Z}\}$ for which there are no quotient q and remainder r satisfying

$$
a=b q+r, \quad 0 \leq N(r)<N(b) .
$$

$\# \mathbf{5 (b)}$ (alternate grid): An explicit example of $a, b \in R_{-6}=\mathbb{Z}[\sqrt{-6}]=$ $\{a+b \sqrt{-6} \mid a, b \in \mathbb{Z}\}$ for which there are no quotient q and remainder r satisfying

$$
a=b q+r, \quad 0 \leq N(r)<N(b) .
$$

