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Subgroup lattices

Let's compare the two groups of order 4:

Qc:—m

m Proper subgroups of Va: (h) = {e, h}, (v) ={e, v}, (r) ={e r}, (e)={e}.
® Subgroups of Cy: (r) = {1,r,r? r*} = (%), (r*)={1.r}, (1) ={1}.

It is illustrative to arrange them in a subgroup lattice.

Order: 4 Va=(h, v) Co=(r)
2 (hy A (v (r?)
1 (e) (1)
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The two groups of order 6

Here are their subgroup lattices:

Order: 6 Zg=(1) D3=(r,f) Order: 6
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(3) </fyrf> (r2f) 2
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Intersections of subgroups

Proposition (exercise)

For any collection {Hy | @ € A} of subgroups of G, the intersection ﬂ He, is a subgroup.
a€cA

Every subset S C G, not necessarily finite, generates a subgroup, denoted
(Sy ={si'sy? sk |s; €S, e ={1,-1}}.
That is, (S) consists finite words built from elements in S and their inverses.

Proposition (proof on board)
For any S C G, the subgroup (S) is the intersection of all subgroups containing S:

<S> = m He

SCHa<G

That is, the subgroup generated by S is the smallest subgroup containing S.
m LHS: the subgroup built "from the bottom up”’
m RHS: the subgroup built “from the top down"

There are a number of mathematical objects that can be viewed in these two ways.
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The two nonabelian groups of order 8
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The subgroup lattice of Dy
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The subgroup lattice of Dy

CERY
I
’ N
’ 1
fa ‘ \f’3f rf,
2f ! 2 N { 2
2] >r r
d o
7’ ~
1 . .
‘ N rf,
N ’

E B B

Chapter 3: Group structure



mailto:macaule@clemson.edu

The three abelian groups of order 8

Zg=(1)
(010,001)  (100,001) ~ (100,010) ~ (100,011)  (010,101)  (110,001)  (110,011) (2)
(100) (010) (0o1) (011) (101) (110) (111) (4)
(000) (0)

Zg X Lo

((0.1),(2,0)) ((1,1))  ((1.0))

RN

(0.1))  (21) (2.0

((0.0))
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More on subgroups
Tip

It will be essential to learn the subgroup lattices of our standard examples of groups. J

Let's summarize the sizes of the subgroups of the groups of order 8 that we have seen.

Cs Qg C4 X C2 D4 Cg’
# elts. of order 8 4 0 0 0 0
# elts. of order 4 2 6 4 2 0
# elts. of order 2 1 1 3 5 7
# elts. of order 1 1 1 1 1 1
# subgroups 4 6 8 10 16

Rule of thumb

Groups with elements of small order tend to have more subgroups than those with
elements of large order.

One-step subgroup test (exercise)
A subset H C G is a subgroup if and only if if the following condition holds:

If x,y € H, then ><y_1 € H.
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Subgroups of cyclic groups

Proposition

Every subgroup of a cyclic group is cyclic.

Proof
Let H< G = (x), and |H| > 1.
Let xX be the smallest positive power of x in H = {xX | k € Z}
We'll show that all elements of H have the form (x*)™ = xk™ for some m € Z.
Take any other x¢ € H, with £ > 0, and write £ = gk + r, where 0 < r < k.
We have x¢ = x9*7 and hence

X" = xt=9k = xtx—9k — xl(xk)_" € H.

Minimality of kK > 0O forces r = 0.

Corollary
The subgroup of G = Z generated by a;, ..., ax is <gcd(a1, o ak)> >~ 7.
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Subgroups of cyclic groups

If d divides n, then (d) < Z, has order n/d. Moreover, all cyclic subgroups have this form.

Corollary

The subgroups of Z, are of the form (d) for every divisor d of n.

J

Zoa=(1) 24
(2) 12
(3) 8
4) 6
(6) 4
(8) 3
(12) 2
(0) 1
subgroup lattice divisor lattice

The order can be read off from the divisor lattice of 24.
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Cosets

Definition
Let H < G. Given x € G, its left coset xH and right coset Hx are:

xH={xh|heH}, Hx = {hx | h € H}.
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Lagrange's theorem

Remark
For any H < G, the left cosets of H partition G into subsets of equal size (exercise).

The right cosets also partition G into subsets of equal size, but they may be different.

Let's compare these partitions for H = (f) in G = Dj.

H rPH rH r3H H  Hr?
flrf| | r || Hr3
1 (2| r|rrf 1 (2| r f Hr

Definition

The index of H < G, written [G : H], is the number of distinct left (or equivalently, right)
cosets of H in G.

Lagrange's theorem
If H is a subgroup of finite group G, then |G| =[G : H] - |H|. O

v
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The tower law

Proposition
Let G be a finite group and K < H < G be a chain of subgroups. Then

[G:K]=[G: H][H:K].

Here is a "proof by picture”:

[G : H] = # of cosets of H in G zH 2K | 2K | K ZnK

[H : K] = # of cosets of K in H

[G : K] = # of cosets of K in G aH @K | &K | a3K anK

H - hhK | h3K hpK

Proof

By Lagrange’s theorem,

L

[G:H][H:K]:W-|K|—|K|—[G:K]. O
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The tower law

Another way to visualize the tower law involves subgroup lattices.

It is often helpful to label the edge from H to K in a subgroup lattice with the index [H : K].

Index = 1 Dicg Order = 12
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The tower law and subgroup lattices

For any two subgroups K < H of G, the index of K in H is just the products of the edge
labels of any path from H to K.
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Equality of sets vs. equality of elements

Caveat! J

An equality of cosets xH = Hx as sets does not imply an equality of elements xh = hx.

° rH
@@GG @—@ H

@)

@

Hr
@ H
Proposition
If [G : H] = 2, then both left cosets of H are also right cosets. J
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The center of a group
Definition
The center of G is the set
Z(G)={z€ G|gz=129. Vg€ G}.

If z € Z(G), we say that z is central in G.

Examples

Let's think about what elements commute with everything in the following groups:

m Z(Dg) = (r?) = {1,r?} m Z(Frz;) = (v) ={1, v}
m Z(D3) = {1} B Z(S4) = {e}
m Z(Qs) = (-1) ={1.-1} m Z(Aq) = {e}

Clearly, if H < Z(G), then xH = Hx for all x € G.

Proposition (exercise)

For any group G, the center Z(G) is a subgroup.
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Normal subgroups and normalizers
Given a subgroup H of G, it is natural to ask the following question:

How many left cosets of H are right cosets?

H |g2H|gsH| -~ |gnH H |Hg2 : Hgn
Hgs
Partition of G by the Partition of G by the
left cosets of H right cosets of H

Definition

A subgroup H is normal if gH = Hg for all g € G. We write H < G.

The normalizer of H, denoted Ng(H), is the set of elements g € G such that gH = Hg:
Ng(H) = {g € G | gH = Hg},

i.e., the union of left cosets that are also right cosets.

Proposition (exercise)

For any H < G,
H<Ng(H) < G.
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How to spot the normalizer in a Cayley graph

If we “collapse” G by the left cosets of H and disallow H-arrows, then Ng(H) consists of
the cosets that are reachable from H by a unique path.

Remark
The normalizer of the subgroup H = (f) of D, is

HUr/2H = {1, f,r"/2,r"/2f} n even

No, (H) = {H:{l,f} n odd.
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Conjugate subgroups
Definition
For a fixed g € G, the (left) conjugate of H by g is
gHg ™' = {ghg™' | h € H}
The set of all subgroups conjugate to H is its conjugacy class, denoted

cg(H)={gHg ' | g € G}.

Proposition (exercise)

1. gHg~! is a subgroup of G;
2. conjugation is an equivalence relation on the set of subgroups of G.

Useful remark

The following conditions are all equivalent to a subgroup H < G being normal:
(i) gH = Hg for all g € G; (“left cosets are right cosets”);

(i) gHg=! = H for all g € G; (“only one conjugate subgroup")

(iii) ghg=t € H for all g € G; (“closed under conjugation”).
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The alternating group A4

, <(12)(34) (13)(24»}7\1

Observations
m A subgroup is normal if its conjugacy class has size 1.
m The size of a conjugacy class tells us how close to being normal a subgroup is.

m Remember these subgroups:
1

Degj (H)'

1
Degj,(K)

v

|C|A4(N)| =1= |C|A4(H){ =dl = |C|A4(K)} =3 =

Degj; (N)’
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Three subgroups of A4

The normalizer of each subgroup consists of the elements in the blue left cosets.

Here, take a = (123), x = (12)(34), z = (13)(24), and b = (234).

(14)(23) (142)  (143)
(124)  (234) (143) (132) (13)(24) (243)  (124) (124)  (234) | (143) (132)
(123)  (243) (142)  (134) (12)(34) (134)  (234) (123)  (243) | (142) (134)
e (12)(34) (13)(24) (14)(23) e (123)  (132) e (12)(34) | (13)(24) (14)(23)

[A4 : NA4(N)] =1
“normal”

M. Macauley (Clemson)

[A4 : NA4(H)] =4
“fully unnormal”

Chapter 3: Group structure

[A4 N NA4(K)] =3

“moderately unnormal”
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The degree of normality

Let H < G have index [G : H] = n < co. Let’s define a term that describes:

“the proportion of cosets that are blue’

Definition
Let H < G with [G : H] = n < co. The degree of normality of H is
Degd(H) i= INGg(H)| _ 1 _ # elements x € G for which xH = Hx'
|G| [G : Ng(H)] # elements x € G

m If Degg(H) = 1, then H is normal.
m If Degd(H) = % we'll say H is fully unnormal.

m If % < Degg(H) < 1, we'll say H is moderately unnormal.

Big idea

The degree of normality measures how close to being normal a subgroup is.
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A special case of the orbit-stabilizer theorem

Theorem
Let H < G with [G : H] = n < co. Then

1 # elements x € G for which xH = Hx

|clg(H)| = w =[G : Ne(H)l = # elements x € G

That is, H has exactly [G : Ng(H)] conjugate subgroups.

G = Ng(N) G
m
n N (K)
n/mJ
’: N \/‘ ) (K xkg e xn Kt )
normal fully unnormal moderately unnormal
[clg(N)| =1 | clg(H)| =[G : H]; as large as possible 1< |eg(K)| < [G: K]

M. Macauley (Clemson) Chapter 3: Group structure Math 8510, Abstract Algebra 24 /59


mailto:macaule@clemson.edu

“Reducing” subgroup lattices
Sometimes it is convenient to collapse conjugacy classes into single nodes in the lattice.

We'll call this the reduced subgroups lattice (caveat: it need not be a lattice!). Sometimes
it reveals patterns in new ways.

Here are the reduced lattices of the dihedral groups. (Note that D, = V,.)
Dig
Dg Cis Q32

S IN

Dy Cs Q16 2Ds @ 2Ds

/\\ N N

2Dy Cy 2D» 1D> Cy 1Dy

SN INIAT NI INTA

G G 2 G e G e s G G e

ANV PN

The left-subscript denotes the size.
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“Reducing” subgroup lattices

Sometimes it is convenient to collapse conjugacy classes into single nodes in the lattice.

We'll call this the reduced subgroups lattice (caveat: it need not be a lattice!). Sometimes

it reveals patterns in new ways.

Here are the reduced lattices of the generalized quaternion groups. What do you notice?

Qa2
/ I\
Q16 Cie Q16
N \ N/
Qs Qs Cs Qs 2Qs Cs 2Qs
N N N
Ca Cy 2Cy Cy 2Cy 1Ca Ca e
N N/ N
G G G
) | !

ey (Clemson)
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Qes

N

Q32 (€:7) Qa2

I\

2Qie Cie 2Qi6

[N

1Qs @ 1Qs

NP

sCa Cy sCa
G
G
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Conjugating normal subgroups

Proposition
If H< N< G, then xHx™! < N for all x € G.

Proof
Conjugating H < N by x € G yields xHx~1 < xNx~1 = N. ]

0%

<f) <I’2f> x(f)x’l
(0} o
<1> x(1)x~1
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Determining the conjugacy classes by inspection

Suppose we conjugate G = D4 by some element x € Dy.

{ Dy ) xDgx~1
’:(fz,f)\/‘ \//<f>\,‘ ’:(rz,n‘)\/‘ X2, xL xxl x(r2 Xl
1:<r’) (r f)\) ((rQ) \ 1/(r ) <rf§) x(Ax~ 1 x(r2Ax=1  x(rZ)x1 x(PBhHxTl x(rf)x—1
S ’,V\\/__/ ~. —_ _-
\<_>/) N
Remarks:

m Subgroups at a unique “lattice neighborhood,” called unicorns, must be normal.
m all index-2 subgroups are normal.
m order-2 subgroups are normal iff they're central. (Why?)

m each nonnormal order-2 subgroup (r'f) has a:

m size-2 conjugacy class. (Why?)

m index-2 normalizer, Np, ({r'f)) = (r!, f).
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Unicorns in the diquaternion group

Our definition of unicorn could be strengthened, but we want to keep things simple.

Are any of the C4 subgroups of DQg unicorns, i.e., “not like the others"?

What can we say about conjugacy classes of the subgroups of DQg just from the lattice?

M. Macauley (Clemson) Chapter 3: Group structure Math 8510, Abstract Algebra
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A mystery group of order 16

Let's repeat a previous exercise, for this lattice of an actual group. Unicorns are purple.

G xGx~ 1
N
(r2,s)  {rs) (r) x<r L (st x{nx!
SN SN

(rtys)  (r?s)  (r?) (4 x T x(rs)x 1 x(r2)x !

SN SN
(s) (r*s)y  (r") x(shx=L x(rés)x=1 x(riyx—1

N

(1) x(1yx-1

Every subgroup is normal, except possibly (s) and (r*s). (Why?)
There are two cases:
m (s) and (r*s) are normal = s € Z(G) = G is abelian.
m (s) and (r*s) are not normal = clg({s)) = {(s),(r*s)} = G is nonabelian.

This doesn’t necessarily mean that both of these are actually possible. . .
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A mystery group of order 16

It's straightforward to check that this is the subgroup lattice of
CGxC={rs|rf=s=1ss=r).

Let r =(a,1) and s = (1, b), and so Gg x C» = (r,s) = {(a, 1), (1, b)).

((a.1), (1, b))

N

(a, b)) {(a, 1))

AN

((1.b),(a% 1)) (@, b)) {(2°.1))

SN

((Lb)  ((a* b)) ((a*1))

N

(1,1)
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A mystery group of order 16

However, the nonabelian case is possible as well! The following also works:

SAs = (r,s|r®=s%=1,sr5s=1r°).
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More on conjugate subgroups

Proposition (exercise)
If aH = bH, then Ha—! = Hb~1, and hence aHa=! = bHb 1.

Ha Ha~l=Hbp"1
ea| .- g1 ea B e
. o1 . o1
eec| op _ ‘ eec| op _
vl op—1 . op-1
H aH=bH H Hb= Hc

Proposition (HW)

For any H < G, the intersection of all conjugates is normal: N := ﬂ xHx 1 < G.
xeG

Chapter 3: Group structure Math 8510, Abstract Algebra
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The second smallest nonabelian simple group

Index = 1 GL3(Z2) Order = 168
7 754 754 24

8 5Cr X G 21
14 7As 7A4 12
21 21Dq 8
24 5 Gy 7
28 2853 6
42 201Gy 7Va 7Va 4
56 28 C3 3
84 21 G 2
168 1 1
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The third smallest nonabelian simple group

Index = 1 As Order = 360
6 6As 5As 60
10 10CEXNG 36
15 1554 1554 24
20 103X S3 18
30 15A4 15A4 12
36 3605 10
40 10C2 9
45 45 D4 8
60 6053 6053 6
72 36Cs 5
90 15Cy 15 Va 15 Va 4
120 20C3 200G 3
180 45 Co 2
360 Ci 1
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Conjugate subgroups, visually

Consider the subgroups A = (a) and B = (b) of G = C4 x (4.

bA bA ) @

©-9°®
@/ @ @
@ @ @ ©\@ @ @ e‘e

O ®©®® O ® @
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Conjugate elements

Definition

The conjugacy class of an element h € G is the set

clg(h) = {xhx~! | x € G}.

Proposition (“class equation”)
For any finite group G,

1Gl =1Z(G)| +>_ |cl(h)].

where the sum is taken over distinct conjugacy classes of size greater than 1.

Proof (sketch)
Immediate upon showing that:
m |clg(h)| = 1iff h € Z(G);

m conjugacy of elements is an equivalence relation.

Proposition (exercise)

Every normal subgroup is the union of conjugacy classes.
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Conjugate elements

Often, we can determine the conjugacy classes by inspection.

Let's look at Qg, all of whose subgroups are normal.
m Since / € Z(Qg) = {£1}, we know |cIQ8(/)| > 1.
m Also, (i) = {=%1, £/} is a union of conjugacy classes.
m Therefore clg, (/) = {£i}.

Similarly, clg, (j) = {#J} and clg, (k) = {£k}.

Qg
. i ] k
— cCEI2)90 N4
=1 —i|—j|—k ‘/
(=1)
(1
M. Macauley (Clemson) Chapter 3: Group structure Math 8510, Abstract Algebra
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“Conjugation preserves structure”

Revisiting frieze groups, let h = hy denote the reflection across the central axis, £o.

Suppose we want to reflect across a different axis, say £_».

Ly t3 2,2 Ly 3 tp £ fo

.0@000 00@00.,
G oY T

h_o = thet™!

ho

g 3t Ly g L4 b3 Lot f
1 1 1

9.9 0 0 0, 9:9.9.9.9
oY 99§ oee

It should be clear that all reflections (resp., rotations) of the “same parity” are conjugate.
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Conjugacy classes in D,

The dihedral group Dj is a “finite version” of the previous frieze group.
When n is even, there are two “types of reflections’ of an n-gon:
1. r2kf is across an axis that bisects two sides

2. r2kt1f is across an axis that goes through two corners.

Here is a visual reason why each of these two types form a conjugacy class in Dj.

@ S8

r rAf =r=1fr r r rf =rYrf)r r

Chapter 3: Group structure Math 8510, Abstract Algebra 41/59


mailto:macaule@clemson.edu

Centralizers

Definition

The centralizer of h C G is the set of elements that commute with h

Co(h)={x€ G |xh=hx}<G.

Exercise: (i) Cg(h) contains at least (h), (ii) if xh = hx, then x(h) C Cg(h).

Definition
Let h € G with [G : (h)] = n < co. The degree of centrality of h is
c [Cs(h)| 1 # elements x € G for which xh = hx
Degc(h) == = - = .
|G| [G: Cs(h)] # elements x € G

m If Deg&(h) = 1, then h is central.
m If Deg&(h) = % we'll say h is fully uncentral.

m If % < Deg&(h) < 1, we'll say h is moderately uncentral.

Big idea

The degree of centrality measures how close to being central an element is.
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The number of conjugate elements

The following result is analogous to an earlier one on the degree of normality and |clg(H)|.

Theorem
Let h € G with [G : (h)] = n < co. Then

1 # elements x € G for which xh = hx

|C|G(h)| = m =1[G6: Ce(] = # elements x € G

That is, there are exactly [G : Cg(h)] elements conjugate to h.

Both of these are special cases of the orbit-stabilizer theorem, about group actions.

G=Cg(h) G G
m
n
n Ce(h)

n/m

Jhy (b Co(h)y=(h) h  grhgyt -+ gnhg;1:> (hy {h gehgst--- gmhagyt)
central fully uncentral moderately uncentral

[cle(m)]| =1 |clg(h)| =[G : (h)]; as large as possible 1< |clg(h)| <[G:(M]
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An example: conjugacy classes and centralizers in Dicg

DIC6 C(.;(r
rs ris r°s
=) (%) | ST T
/// 3 r2 r4
(r) 1 r 7

conjugacy classes

1S r’s  r°s
r? 7 r’s r’s S r’s ris r? r’s r° r°s
r r* rs r*s r r3 o r rs r rts
1 = s ris 1 7 i 1 s s
[G:Cs(r)]=1 [G: Co(r)] =2 [G: Cs(s)]=3
“central”

“moderately uncentral”
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Conjugacy classes in Dg
Let's find the conjugacy classes of Dg by inspection. The centralizers are:
m Cp,(1) = Cp,(r®) = Ds. (order 12; index 1)
m Cp,(r')y={(r), fori=2,3,4,5 (order 6; index 2)

u CDe(rif) ={(r3,rfy={1,r3 r'f, r3*f},  (order 4; index 3).

This is enough information to determine the conjugacy classes!

ey (Clemson) Chapter 3: Group structure Math 8510, Abstract Algebra 45 /59


mailto:macaule@clemson.edu

The subgroup lattice of Dg
We can now deduce the conjugacy classes of the subgroups of De.

Index = 1 I: \?6’ :) Order = 12
L T R ;

3 l}:{i}—_ (—r; r;):(f}-};/)\) 4

4 }f{ 0 3

6 gy ((f:>: :<_r4;>: :<EZE>> <r3f>\ ;rf_>_ :<E5f>> 2

12 X s ) 1
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The reduced subgroup lattice of Dg
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Conjugacy classes in Dsg

Since n =5 is odd, all reflections in Ds are conjugate.

Centralizers

m Cp,(1) = Ds (index 1),

m Cp,(r') ={r) (index 2),

m Cp,(r'f) = (r?f) (index 5). () @9 39 (9

L fr2f r*fl 2 s
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Cycle type and conjugacy in the symmetric group
We introduced cycle type in back in Chapter 2.
This is best seen by example. There are five cycle types in Sy4:

example element ‘ e (12)  (234) (1234) (12)(34)
parity even odd even odd even
# elts 1 6 8 6 3

Definition
Two elements in S, have the same cycle type if when written as a product of disjoint
cycles, there are the same number of length-k cycles for each k.

Theorem

Two elements g, h € S, are conjugate if and only if they have the same cycle type.

For example, permutations in S fall into seven cycle types (conjugacy classes):

c(e), «cl((12)), «cl((123)), cl((1234)), cl((12345)), cl((12)(34)), cl((12)(345)).

Conjugate permutations have the same structure — they are the same up to renumbering.

Big idea J
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Conjugation preserves structure in the symmetric group

The symmetric group G = S is generated by any transposistion and any n-cycle.

Consider the permutations of seating assignments around a circular table achievable by

m (23): “people in chairs 2 and 3 may swap seats”

m (123456): “people may cyclically rotate seats counterclockwise’

Here's how to get people in chairs 1 and 2 to swap seats:

r = (123456)
il —

5 \ 6
swap positions ! -
fgﬂd ) (12)! (12) = r(23)r 1
v
3 2
(2)
. ] ‘0 r = (123456)
4--(d) 1
® ®
5 6
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The subgroup lattice of Sy

Exercise

Partition the subgroup lattice of S; into conjugacy classes by inspection alone.

Index =1

12

24

S

Ay

Dy Ds Dy

Cy Cp G4 Vs Viy Vo Va

GGG GGG GG

G

ley (Clemson) Chapter 3: Group structure
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8
S3 S3 53 S5 6
4

G G2 G G
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The reduced subgroup lattice of Sy

Sy

Ay
6000 0000 200000

%3 00 66 0o Ds

Q000 O g O 0000 OOOO@OOOO 0000 O % O 0000

x3 06 60 0o Ca 06 0000 Va'x3 o6 0o Va

6060 0 @ 0 0000 6606 0 0 0 0000
0 0030
x3 05 6000 _C2 X6 00 c?o oo &

6000 0 0 0 0000
fceceed)
{of
06 0000 _C1
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Conjugacy class size

Theorem (number of conjugate subgroups)
The conjugacy class of H < G contains exactly [G : Ng(H)] subgroups.

Proof (roadmap)

Construct a bijection between left cosets of Ng(H) and conjugate subgroups of H:

xHx~t = yHy ! iff x and y are in the same left coset of Ng(H)."

Define ¢: {left cosets of Ng(H)} — {conjugates of H}, ¢: xNg(H) — xHx1.

Theorem (number of conjugate elements)
The conjugacy class of h € G contains exactly [G : Cs(h)] elements.

Proof (roadmap)
Construct a bijection between left cosets of Cg(h), and elements in clg(h):

“

xhx~! = yhy™! iff x and y are in the same left coset of Cg(h).”

Define ¢: {left cosets of Cg(h)} — {conjugates of h}, ¢: xCg(h) — xhx~1.
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Quotients
Denote the set of left cosets of H in G by

G/H:={xH|x € G}.

Key idea
The quotient of G by a subgroup H exists when the (left) cosets of H form a group.

This is well-defined precisely when H is normal.

Cluster the Collapse cosets Elements of the quotient
left cosets of N into single nodes are cosets of N
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Quotients

Cluster the Collapse cosets Elements of the quotient
left cosets of H < Z¢ into single nodes are cosets of H

SO

Cluster the Collapse cosets Elements of the quotient
left cosets of N < D3 into single nodes are cosets of N

We say that Zeg/(2) & Z> and D3/{r) = C,.
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Quotients

Let’s revisit N = ((12)(34), (13)(24)) and H = {(123)) of As:
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When do the cosets of H form a group?

In the following: the right coset Hg consists of the nodes at the “arrowtips”.

collapse
collapse
cosets cosets >
Elements in the right coset Hg not a valid Elements in Hg valid Cayley
are in multiple left cosets Cayley graph all stay in gH graph
Key idea
If H is normal subgroup of G, then the quotient group G/H exists. J
If H is not normal, then following the blue arrows from H is ambiguous.
In other words, it depends on our where we start within H.
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What does it mean to “multiply” two cosets?

Proposition
If H< G, the set of left cosets G/H forms a group, with binary operation

aH - bH := abH.

It's clear that G/H is closed under this operation, we just have to show that the operation
is well-defined.

By that, we mean that it does not depend on our choice of coset representative:

if aiH = aoH and biH = boH, then aytH - byH = axH - boH.

collapse
collapse
—_
cosets cosets .ﬁ
our destination depends the quotient process destination doesn't depend quotient process
on where in H we start does not yield a group on where we start in H succeeds
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Quotient groups, algebraically

Lemma

When H < G, the set of cosets G/H forms a group.

Proof

To show the binary operation is well-defined, suppose aiH = a>H and by H = boH. Then

a]_H ° blH = a]_b]_H
= al(sz)
= (31 H)bz
= (agH)bQ
= a2b2H
= a2H 0 b2H
Thus, the binary operation on G/H is well-defined.

We'll leave checking the group axioms as an exerci

(by definition)

(b1H = byH by assumption)
(boH = Hby since H< G)
(a1H = axH by assumption)
(boH = Hby since H< G)
(by definition)

se.
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