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Chapter overview

Chemistry investigates how matter is assembled from basic “building blocks’ (atoms).

Main goal

Understand how groups are assembled from basic “building blocks” (simple groups). J

This chapter is broken into three parts:
1. Finite abelian groups are products of cyclic groups.

2. The classification of finite simple groups: the “periodic table of groups.”
3. Extensions of groups: like doing “all of chemistry for groups.”

(a) Groups built from simple extensions (all groups)
(b) Groups built from abelian extensions (solvable groups)

(c) Groups built from central extensions (nilpotent groups)
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Finite abelian groups

Lemma 1

Let |G| = p". Then G is cyclic iff it has a unique subgroup of order p¥ for each
k=0,1,...,n.

Proof
If G = Cpn = (r), then (rd) is the unique subgroup of order p"/d.

Conversely, suppose G has a subgroup of order p¥ for each k =0,1,...,n, and let
|H| = p"t.

By the first Sylow theorem, H has a subgroup of each order p* as well, for
k=0,1,...,n—1.

Therefore, it must contain the unique subgroup of G of each of these orders, and hence,
every proper subgroup of G.

Now, take any g &€ H. The cyclic subgroup (g) of G cannot be any of the subgroups of H,
so it must be G. O

4
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Finite abelian groups

Lemma 2

If G is an abelian p-group with a unique subgroup of order p, then G is cyclic.

Proof

Induct on n, where |G| = p". The base case is trivial.

Suppose it holds for all p-groups of order up to p"~1. Consider the homomorphism
¢: G— G, o(x) = xP.

The kernel is the unique subgroup N < G of order p.

By Cauchy's theorem, every nontrivial subgroup of G must contain N.

G x G Cs G Order: p”
AN )
Ker( ¢) Vs G ~G/Ker(¢) G/n{ #(G)=(a)=G/N prl
N7 ) o
G P(G)2G/Ker(p) Cr=Ker(¢) N=Ker(¢) (unique) P
AN 2 ) )
G G 1
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Finite abelian groups

Lemma 2

If G is an abelian p-group with a unique subgroup of order p, then G is cyclic.

Proof (contin.)
By the FHT, ¢(G) = G/N has order p"~1.
However, ¢(G) < G, so it has a unique subgroup of order p.

By induction, ¢(G) = G/N is cyclic, so it has a unique order-pX subgroup H/N, for each
k<n-—1.

By the correspondence theorem, H is the unique subgroup of G of order pk—1.

G x G G Order: p"
AN \) )
Ker(¢)=Va Ca Ca = G/Ker(¢) G/NK  H(G)=(a)=G/N pt
N7 ) |
G G ¢(G)= G/ Ker(¢9p) Co=Ker(o) N=Ker(¢) (unique) p
NS ) )
1 1
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Finite abelian groups

Lemma 3

Let G be a finite abelian p-group, and A < G a maximal cyclic subgroup. Then G = A x H

for some subgroup H.
v

Proof

Induct on n, where |G| = p". The base case is trivial.
Let A = (a) for |a| = p¥, and assume the result holds for p-groups of order < |G| = p”.
By the Lemma, there is a subgroup B < G of order p, not contained in A.

By the diamond theorem: AB/B =2 A/(AN B) & A.

G G/B

AB/
O\
b

(1

A~ AB/B

B/B
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Finite abelian groups

Lemma 3

Let G be a finite abelian p-group, and A < G a maximal cyclic subgroup. Then G = AX H
for some subgroup H.

4

Proof (contin.)

No quotient of G can have a cyclic subgroup of order larger than |A| = p¥ (because
|H/N| = |(bH)| = pt > p¥ in would force |(b)| > pk).

Therefore, AB/B = A is a maximal cyclic subgroup of G/B.

By induction, there is some H/B < G/B for which G/B = AB/B x H/B.

G/B = (AB/B) x (H/B)

A~ AB/B

AB/
e \B/H /H/B
/

>

B/B

(1
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Finite abelian groups

Lemma 3

Let G be a finite abelian p-group, and A < G a maximal cyclic subgroup. Then G = AxX H
for some subgroup H.

4

Proof (contin.)
It suffices to show that A and H are lattice complements in G.
Generate G: Since B < H, we have BH = H and AB C AH, and hence
G = (AB)H = A(BH) = AH.
Intersect trivially: Using A C AB and basic set theory:
AnNH C AnNHNAB =ANn(HNAB) = AnB = (1).

G/B =~ (AB/B) x (H/B)

G
/ \ /
AB A=~ AB/B

A/ \B/H \ /H/B

B/B
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Finite abelian groups

Lemma 4

Every finite abelian group is a direct product of its Sylow p-groups.

Proof

Induct on the number of primes dividing |G]|.

Fundamental theorem of finite abelian groups

Every finite abelian group is a direct product of cyclic groups.

Proof

By Lemma 4, it suffices to consider the case of |G| = p"”. We'll induct on n.

The cases of n =0 and n =1 are trivial. Assume the result holds for all groups of order
1 n—1
pt,., P

If G is not cyclic, let A be a maximal cyclic subgroup.

Write G = A X H using Lemma 3, and apply the induction hypothesis.
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Conjugacy classes in Ap

Elements in S, are conjugate iff they have the same cycle type.
However, 8 of the 12 elements in A are 3-cycles. These cannot all be conjugate.
Take o € A,. The size of its conjugacy class is the index of its centralizer.

There are two cases to consider:
1. Cs,(0o) is a subgroup of Aj, or equivalently, Ca,(c) = Cs,(0)

2. Cs, (o) is not a subgroup of A, or equivalently, Ca,(c) = Cs,(0) N An.

Sn Sn
> las,@l=m /N2
A A
|cls, (o) =2m " "
=gy ()] ()
2\ m=|clay(o)]
Cs,(0)="Ca,(0) Ca,(0)
Key idea
Upon restricting to A, < Sp, the conjugacy class of o is either preserved or splits in two. J
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Simplicity of As

For example, Ss has 7 conjugacy classes: cls;(e) = {e}, and

cls;((12)), cls5((123)),  cls((1234)),  cls, ((12345)),  cls;((12)(34)),  cls;((12)(345)).
To find the conjugacy classes of As, first disregard the odd permutations. Note that:

m Cs,(e) =S5

m Cs;((12)(34)) and Cs;((123)) both contain some (ij) € As

m Cs,((12345)) < As
Therefore, the size-24 conjugacy class containing (12345) splits in As.

|cls; ((123))] = 20, |cls;((12345))] =12, |cls;((13524))] =12, |cls, ((12)(34))] = 15.

Proposition

The alternating group As is simple.

Proof
Any normal subgroup of As must have order 2, 3, 4, 5, 6, 12, 15, 20, or 36.
It's also the union of conjugacy classes: {e} and other(s) of sizes 12, 12, 15, and 20.

Other than As and (e), this is impossible. O

4
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A few basic properties of the alternating group A,

Lemma
(i) An is generated by 3-cycles, if n > 3.
(i) all 3-cycles are conjugate to (123), if n > 5.

Proof
(i) Since Az = ((123)), take n > 4.

An is generated by products of pairs of transpositions.

m Type 1. Disjoint transpositions:
(ab)(cd) = (acd)(acb).

m Type 2. Overlapping transpositions:

(ab)(bc) = (acb). v
(ii) Take any 3-cycle (abc), and write
(abc) = o0(123)0 71, o€ Sp.
If o € A, we're done. Otherwise, conjugate (123) by o - (45) € A,. v
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Simplicity of A,

Theorem

The alternating group A, is simple, for all n > 5.

Proof

Consider a nontrivial proper normal subgroup N < G.
All we have to do is show that N contains a 3-cycle. (Why?)
Pick any nontrivial o € IV, and write it as a product of disjoint cycles.
There are several cases to consider separately. We'll either
(i) construct a 3-cycle from o, or
(i) construct an element in a previous case.
Case 1. o contains a k-cycle (ajax - - - ag) for k > 4.
Then N contains a 3-cycle:

1

(313283)0'(313223)_ ~0'_1 = (213233)(8132 coo ak)(a38221)(ak coo agal) = (agagak) e N.

eN

In the remaining cases, we can assume that o is a product of 2- and 3-cycles.
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Simplicity of A,

Theorem

The alternating group A, is simple, for all n > 5.

Proof (contin.)

Case 2. ¢ has at least two 3-cycles; 0 = (aiazaz)(asasas) - - - -

If we conjugate o by (a1azas), we can also ignore the other (commuting) cycles in o.

(312234)0'(313234)_1 o O'_l = (al3234)[(318223)(342536) coo ](343231)[- oo (263534)(833231)]

eN

= (8182343386) e N.

We are now back in Case 1. v

Case 3. ¢ has only one 3-cycle; o = (aiazaz)(azas)(asar) - - - .
Then 02 = (a1azaz) € N, and so o € N. v
We've exhausted the cases where o contains a 3-cycle.

In the remaining cases, we can assume that o is a product of pairs of 2-cycles.

v
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Simplicity of A,

Theorem

The alternating group As is simple, for all n > 5.

Proof (contin.)
Case 4. ¢ is a product of 2-cycles; o = (a1a2)(azas) - - .

If we conjugate o by (ajazasz), we can ignore the other (commuting) 2-cycles in o.

(312233)0(313233)_1 -O'_1 = (al3233)(3132)(3334)(333231)(3122)(3334)

eN

= (8184)(3233) e N.

Now, letting ™ = (ajasas),

(a]_a4)(3233)71'[(3134)(3283)]_1 -7r_1 = (al34)(3233)(313435)(3134)(3233)(853431)

eN

= (arasas) € N.

and this completes the proof.

y
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Classification of finite simple groups

Theorem (2004)
Every finite simple group is isomorphic to one of the following groups:
m A cyclic group Zp, with p prime;
m An alternating group A,, with n > 5;
m A Lie-type Chevalley group: PSL(n, g), PSU(n, q), PsP(2n, p), and PQ¢(n, q);
]

A Lie-type group (twisted Chevalley group or the Tits group): Da(q), Es(q), Ez(q),
Es(q). Fa(a). >Fa(2"). Ga(q). *Ga(3"), >B(2");
One of 26 “sporadic groups.”

The two largest sporadic groups are the:
m “baby monster group” B, which has order
|B| =2 .318.850.72.11.13.17-19.23-31-47 ~ 4.15 x 10%3,
m “monster group” M, which has order
M| =2%.320.59.76.112.13%.17.19-23-29.31-41-47-59-71 ~ 8.08 x 10°.

The proof of this classification theorem is spread across ~ 15,000 pages in =500 journal
articles by over 100 authors, published between 1955 and 2004.
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Order = 8.08 x 10%

The 26 sporadic groups

4.15 x 103

1.26 x 104

8.68 x 101°

4.16 x 10

4.09 x 10'®

9.07 x 106

5.18 x 10'¢

2.73 x 101

6.46 x 1013

4.23 x 108

4.96 x 1011

4.61 x 101

4.48 x 1011

1.46 x 101

4,030,387,200

898,128,000

244,823,040

50,232,960

44,352,000

10,200,960

604,800

443,520

175,560

95,040

7,920
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The 31 nonabelian simple groups of order less than 100,000

[[1D group. order [ #dg(9) #subgroups #clg (H) < Sp (min'l) ] aka |
60.5 As 22.3.5 5 59 9 Sg A1(4), A1 (5)
168.42 Ay (7) 23.3.7 6 179 15 S; Ao(2). GL3(Z5)
360.118 Ag 23.32.5 7 501 22 S A1(9), Bo(2)!
504.156 A1(8) 23.32.7 9 386 12 Sy 2G,(3), PSL,(Fg)
660.13 Ap(11) 22.3.5.11 8 620 16 S11 PSL(Z11)
109225  Ap(13) 22.3.7.13 9 942 16 Si4 PSLy(Z13)
2448.a AL (17) 24.32.17 11 2420 22 Sig PSLy(Z17)
2520.a Az 23.32.5.7 9 3786 40 S;
3420a A1(19) 22.32.5.19 12 2912 19 Sxo PSLy(Z19)
4080.a A1 (16) 24.3.5.17 17 3455 21 S17 PSLy(F16)
5616.a Ao (3) 24.33.13 12 6374 51 S13 PSL3(Z3)
6048.a 245(3) 25.33.7 14 5150 36 Sog Go(2), PSU3(Z3)
6072.2 Ap(23) 23.3.11-23 14 5915 23 Soq PSLy(Z03)
7800.a A1(25) 23.3.52.13 15 9559 37 Soe PSL(Zos)
7920.a Mi1 24.32.5.11 10 8651 39 Si1
0828.a A1(27) 22.33.7.13 16 5286 16 Sog PSLy(Zo7)
12180.a A1(29) 22.3.5.7.29 17 10040 22 S3o PSLy(Zog)
14880.a A1(31) 25.3.5.31 18 15413 29 S3n PSLy(Z31)
20160.2 Ag 20.32.5.7 14 48337 137 Sg A3(2)
20160.b Ao (4) 26.32.5.7 10 44877 95 Sp1 PSL3(FF4)
25308.a AL (37) 22.32.19.37 21 17731 23 Sag PSLy(Z37)
25920.a Az (4) 20.3% .5 20 45649 116 Sp7 B>(3), Cr(3)
29120.2 2B,(8) 20.5.7.13 11 17295 22 S5
32736.a A1(32) 25.3.11.31 33 22328 24 Sa33 PSLy(F30)
34440.a Ap(41) 23.3.5.7.41 23 36129 33 Sin PSLy(Z41)
39732.a A1 (43) 22.3.7.11.43 24 25462 20 S44 PSLy(Z43)
51888.a Ay (47) 24.3.23.47 26 48837 29 Sig PSLy(Z47)
58800.2 A1(49) 24.3.52.72 27 73945 51 Sso PSLy(Z49)
62400.a  2Ay(16) 206.3.52.13 22 31373 34 Ses Us(4)
74412.a A1 (53) 22.33.13.53 29 43254 20 Ss4 PSLy(Zs53)
95040.2 Mo 20.33.5.11 15 214871 147 S1o
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The smallest nonabelian simple group (“group atom”)

Order = 60

—

Il
x
[}
k]
£

Ay Ay Ay Ay Ay

of groups
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The second smallest nonabelian simple group (“group atom”)

Index =1

14

21
24
28

42
56

84

168

sCGr

sCGr

>4C3

GL3(Z2)

754

7Aq

2853

201Gy
25C3

21 G
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754 24
21
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21Das

~
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The third smallest nonabelian simple group (“group atom™)

Index =1

10
15

20
30
36
40

45

60

90

120
180

360

6As
10C2x Gy
10C3XS3
15A4
10C2
6053
15Cy
20G3
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1554

45D4

15Va

155G

G

Order = 360

1554

1544
36Ds

6053
36Cs
15Va

20G

Extensions of groups

60

24

18
12
10


mailto:macaule@clemson.edu

The 715 smallest nonabelian simple group: “Lie type A1(173)"

Index = 1 PSLa(Z173) Order = 2588772
174 174173 Cgo 14878
348 174C173% Ca3 7439
7482 1740173 346
14878 14878 Dg7 174
14964  174C173 173
15051 15051086 172
29756 14573C87 87
30102 15051 Cg6 15051043 15051043 86
44634 14878 D20 58
60204 15051 a3 43
89268 14878 29 29
215731 21573144 12
431462 43146203 6
647193 215731 Va 4
862924 14878 C3 3
1204386 15051 2 2
2588772 q
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Image by I/van Andrus, 2012

The Periodic Table Of Finite Simple Groups
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Finite Simple Group (of Order Two), by The Klein Four™
Musical Fruitcake View More by This Artist
Klein Four

Open iTunes to preview, buy, and download music.

Name Artist Time Price
1 Power of One Klein Four 5:16 $0.99 View In iTunes »
2 Finite Simple Group (of Order Two) Klein Four 3:00 $0.99 View In iTunes »
3 Three-Body Problem Klein Four 3:17  $0.99 View In iTunes »
4 Just the Four of Us Klein Four 4:19 $0.99 View In iTunes »
5 Lemma Klein Four 3:43  $0.99 View In iTunes »
6 Calculating Klein Four 4:09 $0.99 View In iTunes »
7 XX Potential Klein Four 3:42 $0.99 View In iTunes »
$9.99
8 Confuse Me Klein Four 3:41 $0.99 View In iTunes »
Genres: Pop, Music
Released: Dec 05, 2005 9  Universal Klein Four 4:13  $0.99 View In iTunes »
® 2005 Klein Four
10 Contradiction Klein Four 3:48 $0.99 View In iTunes »
Customer Ratings 11 Mathematics Paradise Klein Four 3:51 $0.99 View In iTunes »
%% % 13 Ratings 12 Stefanie (The Ballad of Galois) Klein Four 4:51 5$0.99 View In iTunes »
13 Musical Fruitcake (Pass it Around) Klein Four 2:50 $0.99 View In iTunes »
14 Abandon Soap Klein Four 2:17 $0.99 View In iTunes »
14 Songs
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Chopping off subgroup lattices

Going forward, we will iteratively be finding subgroups and quotients of a group G.

It will be convenient to use the following teminology:

G=Qis
(r?.s) (r) (r?.rs)
N=(r) N=(r)
|
(r)
|
1
“chopping off above N < G” “chopping off below N < G"

M. Macauley (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra

25 /80


mailto:macaule@clemson.edu

Group extensions

Every normal subgroup N < G canonically defines two sublattices.
m “everything above": the quotient Q := G/N
m “everything below’: the subgroup N < G.

We say that :
"G is an extension of Q, by N".

Here are four extensions of V4 by C,.

c3 Cs

SN NG IS
NI/ I\ /
<A B

This can be encoded by a sequence

N ¢ G Q

where Im(t) = Ker(m). We say that this sequence is exact at G.
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Extensions and short exact sesquences

If we write

1 N > G Q > 1

and specifiy that the sequence is exact at N, G, and Q, then
m exactness at N means ¢ is injective,
B exactness at G means Im(¢) = Ker(),
m exactness at Q means T is surjective.

We call this a short exact sequence.

L
X
<
N
w
<

Ca s G > > G
N NI/
G — % G G
|
G — G G
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More on exact sequences
Exact sequences arise in algebraic topology, homological algebra, differential geometry, etc.
The “curl of a conservative vector field is 0" can be viewed a short exact sequence:

grad curl

0 12 Hs > Im(curl) ——— 0

Here is an exact sequence of length 7:

Dicc —» C; —> G
D
G /// G
/00N

G C—CZ\I/CA C2<<2 ////

G

Chapter 6: Extensions of groups Math 8510, Visual Algebra
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Extensions
Finding all extensions of a group @ by N amounts to the following.

The “extension problem” J

Find all possibilities for the “middle term” G in a short exact sequence, given N and Q.

We define equivalence of extensions via commutative diagrams related by automorphisms.

0 ™ G
11— Ny — G — Q1 —— 1 / N&

L] JW J" 11— N Ly Q——1

L
1— Ny — G — Q@ —— 1 \«E/:

Do you see why these three extensions of Vi by C, do not differ by an automorphism?

f—h

A —T ]
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Extension equivalence

There are three nonequivalent extensions of Vi by G, that give Ds:

1 @) Dy 1 1

Every v € Aut(Dy)
stabilizes these cosets

3 2 | B3r

ley (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra 30/80


mailto:macaule@clemson.edu

Semidirect products and extensions

A semidirect product N x H is an extension of H by N.

1 N —— NxgH ——— H 1.
In the subgroup lattice, we can see
m N < G at the bottom,
m H < G at the bottom,
m Q= G/N=H at the top.
Dg Dicg As
I/Cg {93 Cot D I//)D3 \ G \\\\~ ~ \ ~
V4 Vi Vy Vi Vi Vy / JG G G ) 7%
G A

N ~
c G Q%% \Cz NLtERER
o C

Do you see a canonical injection from Q = G/N = H “down to" H < G?
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Split exact sequences

Definition
A short exact sequence splits if there is a backwards map B: H — G for which mo 8 = Idy:

L ™

1 N > G H 1

C1

Cy'Cr Gy Co o o Co
G

G —— G

ey (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra 32/80


mailto:macaule@clemson.edu

Split exact sequences and semidirect products

Theorem
A short exact sequence 1—> N—— G FL> H—>1 splits if and only if G & N x5 H.
W
v
Proof
"<" We've already seen this. v
"=": Suppose we have a split exact sequence, and B: H — G satisfies mo 8 = Idy.
It suffices to show that ¢(N) = N and B(H) = H are lattice complements.
m Generate G: Take g € G, we will show that g = nh € «(N)B(H).
SN =H

Let h=pB(m(9)) € B(H). 4

It suffices to show that n = gh™! is in t(N) = Im(t) = Ker(w). By exactness,

m(¢(N)) = 1y, and with wo B = Idy, we get

n(n) = m(gh™!) = w(9)(h) " = () - (B(n(0)) "} = n(9) - () ! = Ly
hence n € Ker(). v
Math 8510, Visual Algebra 33/80
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Split exact sequences and semidirect products

Theorem

A short exact sequence 1—> N—L> G%) H—>1 splits if and only if G = N Xy H.

B

Proof
“<": We've already seen this. v

"=": Suppose we have a split exact sequence, and B: H — G satisfies m o8 = Idy.
It suffices to show that ¢(N) = N and B(H) = H are lattice complements.
m Trivial intersection: Suppose g € «(N) NB(H), and write g = B(h).
Since g € t(N) = Im(¢) = Ker(m),
1y = m(g) = 7(B(h)) = (w0 B)(h) = Idy(h) = h.
Therefore, g = B(h) = B(1x) = 1. and hence t(N) NB(H) = (1g). O
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Split exact sequences and direct products

If G2NXxH=X=H X N, then G is an extension of N by H, and vice-versa.

L s L s
1—SN—SNxH—sH—>1 1— H 25 HxN—3 N—>1
T'-_-7 T-_-7
B1 B2

This gives a certain “duality” to the subgroup lattices. Here is Dg = D3 x (o & G X Ds.

Dg De
C D3 D3 )

/
Cs D3 D3 )

Vi Vi Vg Vi Vi Vg
G G
\’Q/)Cgcgczczc G (Ca)cgczczczc G
\% \///
G G
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Split exact sequences and direct products

Another way to capture this duality is to distinguish between “right split” and “left split.”

Definition
A short exact sequence is left split if there is a map B: H — G for which ac ot = Idy:
L T
1 N > G H 1
ﬁ‘\ =7
[e3
™
Cs x Co e S G
G Co Co
L
Vi — —— G
-
- - C3
&-7s
G C|2 G [ERENe
G — O G
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Split exact sequences and direct products
Proposition (HW)
m If a short exact sequence is left split, then it is right split.
“if it's a direct product, then it's a semidirect product”

m If a short exact sequence is right split and G is abelian, then it is left split.

“if an abelian group is a semidirect product, then it's a direct product’

Cox G
// G=NxH
Cs Co Cs N=~G/H
(left split)
H=~G/N Vs
L I
1—>Nr—>Gr—>H—>l (always)
“«__- -
a B G
G=NxH
NDG He G/N
(always) G G & (right split)
G
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Split exact sequences and direct products
If G= N x H, then G is an extension of N by H, and vice-versa.

L1 st L2 T2
1 N NxH—3 H—>1 1 H—— NxH —— N 1

~__ - ~_ -
o1 B1 o2 B2

This gives a certain "duality” to the subgroup lattices. The two abelian groups of order 12
break up as a direct product in three ways:

Cio Cio Cex G Ce x Co Cex Co Ce x Co
/ / /// // / N\ ]
Co Co N 6\bC6 5‘6C6
I\CE) I\CE) y A
,:c3 ) r:c3 ) G ) G) G G
G G G G G [Cxexe G GG G GG
/ / v v 7 N\l
G G G G C1/ Cl/
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Central and stem extensions

Definition

An extension 1 N G > Q 1 s
m abelian if N is abelian,
m central if ((N) < Z(G),
m a (central) stem extension if L(N) < Z(G').

The group G = C4 x C4 is a central (and hence abelian), nonsplit extension of Q = Qg by

CixCo CixCy CaxCo /l\
AN \|/

G G G G W

L \\///I\\/ . |

&G Y— —_— G

\I/

C4><1 C4

G
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Types of groups extensions

If G is a (non-split) extension of Q by N, we write N.Q.

Here are the different types of extensions and how they are related.

non-split
abelian

N.Q A.Q

non-split split abelian

A x H (left-split)

In general, we are interested in understanding how groups can be “built with extensions,”
via simple groups.

Preview
If G can be broken up into
m abelian extensions, then it is solvable,

m central extensions, then it is nilpotent.
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Climbing down subgroups lattices via “simple steps”

Every finite group G has > 1 maximal normal subgroup: N < G for which G/N is simple.

Let Gp = G, and G; < G be any maximal normal subgroup.

Next, pick any maximal G, < G;. Note that G, need not be normal in G.

Iterate this process of taking “simple steps” down the lattice, until we reach the bottom.

Definition

A composition series for G is a “descending subnormal series’
G=G>GDB - >Gy=(1)

where each G;/Gj;1 is simple. The composition factors are the quotient groups G;/Gj1.

Note that each G; is an extension of G;/Gjy1 by Gji1.

Big idea
Breaking down a group into composition factors is like factoring a number into primes, or a
molecule into atoms. We say:

“Every group can be constructed by ‘simple extensions'"

M. Macauley (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra 41/80


mailto:macaule@clemson.edu

Composition series and simple extensions
Here is an example of a composition series: G = Go > G1 > Go > Gz > G4 = 1.

These are all simple extensions. The composition factors are marked.

G0=SL2(Z3) 1—>'C‘?8(_>SL2(Z3)—>'>C3—>1
I
I
C3 |
I
|
G1=Qs 1—>§4;>C\?/s—»cz—>1
I
G Co G Go G I
I
G=C G G 1—>C‘2‘—>&:H->Cz—>1
I
G G G G G I
I
G3=C, 1—)};>\CV2—>'>C2—>1
I
@) I
I
Gy=C, 1 3 1¢ >T 51 1

They will always be either cyclic or non-abelian simple (e.g., As, GL3(Z2), Aes....).

Preview: A group is “solvable” if they're all cyclic.
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Composition series and simple extensions

The group G = SL2(Zs) is not solvable because one of its composition factors is a
nonabelian simple group.

Order = 120 Go = SL2(Zs) 1—)({2‘—>G0HA5—>1
I
I
I
I
I
I
|
24 5 Ska(Z3) }
20 6 DiClo |
I
12 10 Dicg :
10 5Cio :
8 5Qs I
6 10GCe !
5 6Cs :
4 15Ca |
I
3 10G :
2 G =G 1 ‘1‘ arl > Cao >1
I
|
3 v
1 G=C 1 1¢ Go > »1

ey (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra 43 /80


mailto:macaule@clemson.edu

Composition series and simple extensions

The group G = Sy is not solvable because one of its composition factors is a nonabelian
simple group.

Order =120 Go =S 1—>A‘5‘—>Go—)->Cz—>1
|
|
-
60 G =A 1—>1———">G —»As——1
24 5S4
20 6 AGLy(Zs)

5A4
5

10Ds
5Ds

D)

12

10

8 1

6 1053 100G 1053

5 5Cs
4 15Va 115G 5V

3 10G /

2

\15[2
G2

!
!
|
|
|
|
|
|
|
!
!
!
!
|
|
|
|
|
|
|
U
~

=G 11— 11— G—n1——1
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Composition series and simple extensions

How many composition series do the following groups have? What are their factors?

Qg % Cy D3xCy
D c Di
Qg x G 6 12 icg
C18 €18 C18 C18 CyxCp CyxCp CyxCo
C12C12 €
12 €12 C12 SN Dy 03 c
Qs 9 Co Co Co
Cs VaVaVy Cq CaCaCy
G4 G C
4 Ca Gy ‘o &
QGG QGG &
G

C a

Do you see why we need to work from “top to bottom” to find them?

The following result is analogous to how integers can be factored uniquely into primes.

Jordan-Hélder theorem (upcoming) J

Every composition series of a group has the same multiset of composition factors.
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Equivalence of composition series

Two composition series
G=GP>GE-->Gy=1, G=HoDH B -DH =1
are equivalent if £ = m, and they have the same composition factors up to re-ordering.

Notice how all of the composition series of the following groups are equivalent:

G = Dicg Loy = <1)

G" = (1) (0)

This is guaranteed by the Jordan-Holder theorem.
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Equivalence of composition series

Jordan-Holder theorem

Any two composition series for a finite group are equivalent.

Proof

We proceed by induction (base case is trivial). Suppose we have two composition series:

G=G>GE-->Gy=1, G=HoH B> H =1,

and the result holds for all groups with a composition series of length < m.

If G1 = Hi, the result follows from the IHOP. So assume otherwise, and let Ko = G; N H;.

Take a composition series of K.
We now have 4 composition series of G.
Reading left-to-right (see lattice):

m The 1st & 2nd, and 3rd & 4th have the same factors
by the IHOP.

m The 2nd and 3rd have the same factors by the
diamond theorem.

G /G\H
N\

G Ho

Gz K3 Hs

Gm = Ky = Hy = (1)

M. Macauley (Clemson) Chapter 6: Extensions of groups

Math 8510, Visual Algebra

47/80


mailto:macaule@clemson.edu

Climbing down subgroups lattices via “abelian descents”

Suppose G; < G and G/G; is abelian. We'll call Gy, and the act of jumping from G down
to Gy, as an abelian descent.

Equivalently, G is an abelian extension of G/Gj by Gj.

Proposition (exercise)
If N < G, then G/N is abelian if and only if G’ < N. J

In other words, the commutator subgroup G’ is the maximal abelian descent from G.

Definition
A group G is solvable if can be constructed iteratively by abelian extensions: there exists

G=G> G- B Gn=(1)

where each factor G;/G;,1 is abelian. (Or equivalently: cyclic.)

Definition

The derived series of group G is the series

G =GO > GM > G? > G® B oo, where GK+1) — (G(k))
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Solvability
The derived series of G = SL»(Z3) reaches the bottom in 3 steps.

G={(a,b)

G/G' =5

G’ = (a%b, ab?) G’ = (a?b, ab?)

(a) (b) (ab) (ba)

/6" =v, . (a?b) (aba) (ab?) (22b) (aba) (ab?)

(@) (b?) ((ab)*){(ba)?)
G = (a%)

— G//=<a3> GII=(a3)
G"/GM = Cy \

G”':(l) GIII:<1> GIII:<1>

We say that SLy(Z3) is solvable, with derived length 3.

By the correspondence theorem, we can refine the derived series to a composition series.
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Solvability in terms of abelian extensions
Key idea

A group is solvable if it can be constructed as a series of abelian extensions.

From top-to-bottom: G = Gy > G1 > G, > G5 = (1).

G=5Ly(Z3)
1——> Qg ——SLy(Z3) —» C3——— 1
1
|
l
<
1 G C Qg Vg 1
G'=Qs :
|
G G G G 1 1€ & 5 Co 1
Cy Cy Cy

G G G G 1—)(:;';>GH'>G/G'—>1

L—— 6" G —» G/ —1

I
I
G =C;

I Gy G —3y G/ —31

(Clemson)

Chapter 6: Extensions of grou:


mailto:macaule@clemson.edu

Solvability in terms of abelian extensions

Key idea J

A group is solvable if it can be constructed as a series of abelian extensions.

From bottom-to-top: (1) = G3 I G, < G; I Gy = G.

G=5Ly(Z3)
1 »C3 € G 1 >1
A
1
1
1
1 > V4 > As G 1
G'=Qs ~
1
1
/\ ° % G G 1 Co 3 SLy(Z3) —p Ay ——1
G G G
\/ G G G G 1——G/G'“—>G/G'—»G/G——1
A
1
G,,=C2 :
1— G /G G/G"—»G/G—>1
N
1
1
GIII=C1 1

1— G /G G/G" =% G/ G ——>1
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Solvability in terms of composition series (simple extensions)

Proposition
A finite group G is solvable if and only if G(™) = (1) for some m € Z. J

Intuitively: if (non-maximal) abelian descents reach the bottom, so will maximal abelian
descents.

Proof
“=" is trivial. For “<=", say G has a subnormal series with G, = (1) and abelian factors.
We need to show G(™ = (1), but we'll prove a stronger statement:

W < Gy forall k& N.
We can do this by induction.
Base case: Since G/G;j is abelian G’ < Gy. v
Bonus base case: Since Gi/G; is abelian, Go must contain (G1) = G”.

Suppose G(K) < Gy holds; then G(+1) < Gj.

Since Gi/Gg.1 is abelian, Gki1 must contain G,’( > Glk+1), O

4
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Solvability and subgroups
Given subgroups H and K of G, define

[H Kl =([h Kl |heH ke K)=(hkh 'kt | h € H, k € K).

Notice that

G = [G, G], G = [G/, G/], G" = [G”, G”], o ) G(k+1) — [G(k), G(k)].
Lemma
If K< H<G, then [K, K] < [H, H]. O
Proposition

If G is solvable and H < G, then H is solvable.

Proof
By the lemma, H' = [H, H] < [G, G] = G’, and inductively,

H' — [H/, HI] < [G/, G/] — G//v i H(k+1) _ [H(k), H(k)] < [G(k), G(k)] — G(k+1).
Since G is solvable, G(™ = (1) for some m € N.

Solvability of H follows immediately from H(™ < G(™ = (1).

y
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Solvability and quotients

Proposition
If G is solvable and N < G, then G/N is solvable.

Proof

Let m: G — G/N. The commutator of the quotient is the quotient of the commutator:
m([x, ¥]) = TOox Ty ) = xyx Ty TEN = [XN, yN].
Therefore, (G/N) = w(G’), and (G/N)K) = n(G(K)).

Since G is solvable, G(™ = (1) for some m € N.

Therefore, (G/N){(™ = N/N, and hence G/N is solvable. O

The proof above suggests that commutators behave well under homomorphisms.

Exercise

Suppose ¢: G — Gy is a homomorphism. Then:
(i) &([h. k]) = [¢(h), p(K)]. for all h, k € Gi.
(i) &([H. K]) = [¢(H), p(K)]. for all H, K < Gi.
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Solvability

Theorem

Suppose N < G. Then G is solvable if and only if G/N and N are solvable.

Proof

Use the correspondence theorem to create a composition series of G:

G/N = Go/N G =G
’ ’
/ / ‘
! /
/ G1/N / G1
composition Il |
series of G/N | \
\ \ :
\ \
\ \
\ \ |
§

N/N = G /N N =G, N=g
o o

! /
composition | 1 .
seriesof N d :

\ \
' | ' |

Py Py

(1) = Gm (1) = Gm

M. Macauley (Clemson)
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Solvability and extensions: abelian vs. cyclic

Big ideas
Composition factors are like “atoms” that groups are built with. They are either cyclic, or
nonabelian simple groups.
A group G solvable if
m we can climb down the subgroup lattice using “maximal abelian descents’

m the (minimal) “simple steps’ down the subgroup lattice are all cyclic.

Theorem
The following groups are solvable.
m p-groups (we'll prove soon)
m All groups of order p"q™, for primes p and g (Burnside)
m Groups of order p" - m (p{ m) that have a subgroup of order m.
m Groups of odd order (Feit-Thompson; 250+ page proof).

m Groups for which all 2-generator subgroups are solvable (Thompson; 475 page proof
that uses the Feit-Thompson result).
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Central ascents
Starting from any normal subgroup N < G, we can ask:

"if we quotient by N (chop off the lattice below), what subgroup Z/N is the center?”

We'll give this a memorable name, as we did for (maximal) abelian descents.

Definition
It NG, then Z< Gisa
m central ascent from N if Z/N < Z(G/N),
m maximal central ascent from N if Z/N = Z(G/N).

- G ~_ G/N
maximal > —
central ascent z Z/N = Z(G/N)
central central
b ascents subgroups HEN
you are here =——3 N N/N

By iterating this process from Zo = (1), we can (attempt to) climb up a subgroup lattice.
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Nilpotent groups and the ascending central series
Definition
Let G be a finite group, and let Zyp = (1) and Z; = Z(G). The series
<1>:Zoﬂ21§]22ﬂ-“, where Zk+1/Zk:Z(G/Zk)

is the ascending central series of G, and if Z; = G for some m € N, then G is nilpotent.
The minimal m is the nilpotency class.

23=6=6() G/7; G/Z,
(r2,s) (r) (r2, rs) (r2.5)/z1 (N2 (R (r2,8)/Zy  (N/Zo (r2,15)/ 2,
(s) (r2s) Zoy=(r2)=G’ (rs) (r3s) (/21 (r%s)/zy  Z2/Z3 (rs)/Zy (r3s)/z, 25/2,
Z; = () 21/7;
Zo=(1)=G"'
Big idea
The subgroup Zj1 is the maximal central ascent from Zj. J
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Nilpotent groups and central extensions

Proposition
If G is nilpotent, then it is solvable.

Proof

The ascending central series (1) = Zp < Z; <--- < Z;, = G is a normal (and hence
subnormal) series of G. (Why?)

Since Zx11/Zx is the center of the group G/Z, it is abelian.

Since G has a subnormal series with abelian factors, it is solvable.

One easy way to remember this

“it’s easier to fall down than to climb up.”

Corollary

Every p-group is nilpotent, and hence solvable.

Proof

Since p-groups have nontrivial centers, Z; < Z;,; for each i.
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Nilpotent groups

Starting from N < G, we can ask:

How can we characterize the central ascents algebraically? Which one is maximal?

Central series lemma
If N< H< G and N< G, then

H/N < Z(G/N) ifandonlyif [G,H]<N

In particular, the maximal central ascent from Nis: Z={z€ G |[g.z] € N, Vg € G}.

Proof
If H/N is in the center of G/N, then for all h€ H and g € G

gN-hN =hN-gN <= ghg 'h"IN=N <= [g.heN <<= [G H]<N.

Definition

If NG, then L =[G, N] is a maximal central descent from N. Intermediate subgroups
L < K < N are central descents.
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Central ascents

- G ~_ G/N
maximal _
central ascent g Z/N = Z(G/N)
central central
k. ascents subgroups H/N
central 1
descents
you are here —) N N/N
B
416, 2]
4|
by the central [G H]
series lemma :‘ [
[G. N]
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Central descents

Z Z/L=2z(G/L)
e |
N " maximal
you are here” SN central ascent N/L
central ‘
central : subgroups
descents : H/L
maximal N _ — ‘
central descent L= [N =[G,2Z] L/t
X
16, H]
by the central 4
series lemma [G, L]
|

L
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The descending central series

To take “maximal central descents” down a subgroup lattice: at each Ly, look down and ask

“what’s the smallest subgroup L1 where we can chop off so G/Ly remains central?’

Lo=(r,s) is at the center of G/L; = V4

L; =(r?) is at the center of G/L, = Dy

Lo =(r*) is at the center of G/L3 = Q15

(-+-=Ls =) L3=(1) is central in G/Ls = Q16

We call this the descending central series of G.
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Another way to climb down a subgroup lattice

Definition
The descending central series is the normal series
G=Lo>Li>L>--, L1 =[G, Lo], Lo =[G, L1]...., Lky1 =[G, Lg].

It is "harder” to climb down a subgroup lattice in this manner than via the derived series:

G>G >G>, G =1[G.G], G"=[G.GN....Gus =[GW, GW].

Proposition

For any group G, we have G(K) < [

Proof

We start with G(©) = Ly = G and G! = L; = [G, G]. However, at the second step,
G' =[G, G1<[G G1=][G, L] = Ly,

with the inequality due to G’ < G. Inductively, if G<—1) < [,_4, then

G =[GlD), % V] < [G, Lky] = L,

with the inequality holding because G(=1) < G and G*=1) < [, ;.
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Chutes and Ladders diagrams

Define the Chutes and Ladders diagram of G from its lattice by adding, for each N < G:
m a red arrow for each maximal central descent N\/L, i.e., L =[G, N],
m a blue arrow for each maximal central ascent, N "Z, i.e., Z/N = Z(G/N).

The ascending and descending central series can be read right off this diagram!
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The chutes and ladders diagram of a non-nilpotent group

Order
Lo=SL2(Z3) 24

L1=Ds 12
L1=Qs 8
G G G Cs Cs D3 [Ds 6

Cy Cy Cy Vi Vi Va 4

w

C3 C3 C3 C3 L1=C3
Z:=Cs 0 Z1=C G G G G G G

N

Zo=C Zo=C 1
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Ascending vs. descending central series

The ascending and descending central series differ for 6 of 9 nonabelian groups of order 16.

This is the smallest |G| for which this happens.

Lo = SAg = Z» Lo=CsxCs =12,
(r?,s) (rs) (r) CaxCo CaxC CaxGCo
(r*,s) (r?s) (r¥y =2, Cy Co Cy C Va=12Z1 G Cy
(s) (r*s) "y =Ly Co Co Co =14
Ly =Ci =2 L=C =12
Key idea (that we'll prove)
The ascending and descending central series have the same length. J
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Monotonicity of central ascents and descents

Proposition

Let N < H < G be a chain of normal subgroups. Then
1. If Z(G/N) = Z1/N and Z(G/H) = Zx/H, then Z; < Z5.
2. [G,N] < [G, H].

Z> Z>/N H
Z T Z(G/N)=Z/N N l
T H H/N l (G, H
N N/N (G, N]
Proof of (i)
For any z € Z3, the coset zN is central in G/N, which means that, for all g € G,
zNgN = gNzN <= [z,9] < N by the central series lemma
= [z,9]<H by assumption, N < H
<— zHgH = gHzH by the central series lemma
<~ zH € Z(G/H) by definition of Z(G/H)
= ze€ L by definition; Z(G/H) = Z>/H.
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The crooked ladder theorem

Let G be a finite group, and suppose that either of the following hold:
1. The descending central series reaches the bottom: L,_; > L, = (1).
2. The ascending central series reaches the top: Z,_; < Z, = G.

Then for all k =0,...,n,
Lok < Zk.

Lo =G= Z,

Zy 1

«—
—

Ly
maximal central descents l

—

Zy2
Lo

-«

Lp—2 T maximal central ascents

L < Zo =(1)
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The crooked ladder theorem

Let G be a finite group, and suppose that either of the following hold:

(i) The descending central series reaches the bottom: L,—1 > L, = (1).

(ii) The ascending central series reaches the top: Z,—1 < Z, = G.

Then for all k =0,...,n,
Lok < Zk.

Proof of (i); Part (ii) is analogous (HW)
Induct on k. The base case is trivial: L, = Zp = (1).

Inductive step: Zit1
4 Ln— k

Part (i) Lp—k—1 Z

Ln—k Ln—k+1

Part (ii)

Ln+k—1/Ln—k € Z(G/Ly—k)

——_—
Note that L,_,_; is a central ascent from L,_y: Ly < Lpy1<Z< Zpyq.
N———

monotonicity

O

4
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The ascending and descending central series have the same length

Corollary

The ascending central series reaches Z, = G iff the descending central series reaches
Lm = (1). If this happens, their lengths are the same.

Proof

Lo = G= Z, Lo = G= 2Z,

l Z,_1 might be G l Z,1<G
Ly [ Ly T

l 2"72 l Zn—2

;o P
l Zy i Z,

L,,fz T Ln—z T

‘1‘ Z i Z

(1) > Lyt [ might be trivial L,_1 T
L, < Zo =(1) L, < Zo =(1)

M. Macauley (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra

71/80


mailto:macaule@clemson.edu

Ascending vs. descending central series

Here's a familiar example, higlighting the “crooked ladder property,”

Lok < Zy, or equivalently, Ly < Z,_k.

1—>LI1L>L0—)->C4><52—>1 Lo =SAg=2; 1= G 2= Va—1
1
I
|
(rz,s) (rs) (r) 1
|
|
|

1
1
1
1
1
|
1
| (hs) (2s) (=7 1= 1 Zi—H G—1
1
1
1

1
I
I
1—>L|2;>L1—»C2—>1 (s) (r4s) (r*y =L :
| |

~ I
1— 11—l —»1—>1 Lo=(1)=Zo 1—>1—Zo—n1——>1
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Products of nilpotent groups are nilpotent

Lemma
If G=H x K, then L,(G) = La(H) x Ly(K) for all n.

Proof

The proof is by induction. The base case is easy:
G = Lo(G) = Lo(H) x Lo(K) = H x K.
Next, suppose that Li(G) = Lx(H) x Lx(K). Then

Lt (G) = [H x K, Lk(H x K)] = [H x K, Li(H) x Lx(K)]
= [H, Lk(H)] x [K, Lk(K)]
= Lyy1(H) X Ler1(K),

and the result follows inductively.

Corollary
If H and K are nilpotent, then sois G = H x K.
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Normalizers grow in nilpotent groups

In the ascending central series, each Zj; was defined implictly, via Zj11/Z; = Z(G/Z)).

Since Z;4; is the maximal central ascent from Z;, we have an explicit formula:

Zii1={x€G|x,gl€Z, Vg€ G} ={x€ G |xZigZ = gZixZj, Vg € G}

Proposition
Subgroups of a nilpotent group G cannot be fully unnormal: if H < G, then H < Ng(H).

Proof
Take the maximal Zj containing H. We'll show that Ng(H) contains Zy 1.

Pick some x € Zx11. (Need to show it normalizes H.) Ng(H)

For all g € G, we have [x, g] € Zk. \
Thus, [x, h] = xix"1h™' € Zy < H, for all h € H. Zr H
Since xhx1h=1 € H, then xhx~! € H.

Z,
Thus, x € Ng(H). .
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Sylow p-subgroups of nilpotent groups

Proposition
A finite group is nilpotent iff it is the internal direct product of its Sylow p-subgroups.

Proof

"<": by previous lemma.

“=" Let P € Syl,(G) be a Sylow p-subgroup.

Then “normalizers must grow”, but also Ng(Ng(P)) = Ng(P).
Thus Ng(P) = G, so P < G is the unique Sylow p-subgroup of G.

Let P1, ..., Py be the distinct Sylow pj-subgroups of G. We need to verify:
1. G=P1Py--- Px. v
2. each P; < G. v
3. each P; trivially intersects
Qi=(Pilj#i)
If g € PN Qj, then |g| = pf divides _];[_pj.jj, which is co-prime to p;. v
J#i

M. Macauley (Clemson) Chapter 6: Extensions of groups Math 8510, Visual Algebra 75/80



mailto:macaule@clemson.edu

Central series
Definition
A central series of a group G is a normal series

(1)=C G <---<4Cyp =G,  such that

Cit1/Ck < Z(G/ Cy).

Equivalently, G/Cy is a central extension of G/Cy.1 by Cii1/Cy.

1 — Ck+1/Ck i} G/Ck l} G/Ck_H — 1

Cm = Cl; G/Ck > C/Cr1 > Ci1/ Cher1
z/cp Z/Chyq
L
Cr1 Chy1/Ck ——> Cpy1/Ck Cr1/Cht1
Ck Ch/ Gk ———p Ck/Ck Cie/ Ci
Co=(1)
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Central series

Remark

The ascending central series of a nilpotent group G is a normal series
<1> =202 <4---<Zyn =G, such that Zk+1/Zk = Z(G/Zk)

Equivalently, G/Zj is the maximal central extension of G/Z.1 (by Zk11/Zk).

L .y
11— Zks1/Zk — G/ Zk — G/ Zjs1 — 1

™
m = (I? G/Z) » /21 > Zk11/Zk 41
| .
Zia s e Zk41/ 241
Zk 2/ 2k —p Zk/Z% Zic/ 2
Zo = (1)
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Central series
Remark

The descending central series of a group G is a normal series

G=LobLil---BLn=G,

such that  Ly/Lyy1 < Z(G/Lks1).
Equivalently, G/Ly1 is a central extension of G/Cy by Ly/L1.

L b
1— Lk/Lk+1 —k> G/Lk+1 —k> G/Lk — 1

v
™
Lo :Ci G/l > G/Lk > Li/lk
| ZILiy z/L
Ly

L
Lie/Lppy C—p Li/Lypn

Ly/Lk

Ly Ljet / Lpepr—— k41 /L k1 Lyea /Liea
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Solvability and nilpotency in terms of extensions

Summary
m Every finite group can be constructed from extensions of simple groups.
m Solvable groups can be constructed from abelian extensions.

m Nilpotent groups can be constructed from central extensions.

non-split
abelian

N.Q N.Q

non-split split abelian

N xg A

A X H (trivial)
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Summary of nilpotent groups

Theorem
A finite group G is nilpotent if any of the following conditions hold:
1. Z, = G for some n (“the ascending central series reaches the top")

2. Lm = (1) for some m, (“descending central series reaches the bottom’)
3. H < Ng(H) for all proper subgroups, (“no fully unnormal subgroups”)
4. All Sylow p-subgroups are normal.
5. G is the direct product of its Sylow p-subgroups.
6. Every maximal subgroup of G is normal.
.
Ln= <1>
Cor.

HW
ag Prop. Exer.
max'| = normal %——/2’726% G=P1Py--- Py % np=1, Vp

Cor.
Prop. HW

normalizers grow
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