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Factoring maps

We’ve discussed a number of properties that can be described as

“the minimal ,” or “the maximal ,”

satisfying some condition.

We’ll see to express this concisely in terms of maps and commutative diagrams.

This will highlight similarities and patterns that are inherent in seemingly different
structures, streamline proofs, and lead to new insight.

Warm-up exercise (easy)
Given maps g : G ! H and h : H ! K , their composition f := h ◦ g is a map from G to K .

I.e., there is always a map f : G ! K making the following diagram commute:

G

H

K

g

f = h ◦ g

h
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Factoring maps

Let’s now consider two variants of the previous commutative diagram.

Definition
Given two maps. . .

1. from the same domain, f : G ! K , g : G ! H, when does there exist h : H ! K

2. into the same codomain, f : G ! K , h : H ! K , when does there exist g : G ! H

such that f = h ◦ g?

G

H

K

“f factors through g”

g

f

h

G

H

K

“f factors through h”

g

f

h

We say that h and g are factors of f .

We’ll do an example of each that will nicely illustrate when and why this happens.

Both will involve G = SA8 = 〈r , s〉, and its subgroups N = 〈r2〉 ∼= C4, and M = 〈r4〉 ∼= C2.
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Factoring maps: a quotient between the codomains

Let G = SA8 = 〈r , s〉, and N = 〈r2〉 ∼= C4, and M = 〈r4〉 ∼= C2.

The standard quotient map f : SA8 ! V4 can be factored:

SA8

〈rs〉〈r2 , s〉 〈r〉

〈r4 , s〉 〈r2s〉 〈r2〉=M

〈s〉 〈r4s〉 〈r4〉=N

〈1〉
SA8/N ∼= C4×C2

〈rs〉/N〈r2 , s〉/N 〈r〉/N

〈r4 , s〉/N 〈r2s〉/N 〈r2〉/N

〈s〉/N 〈r4s〉/N 〈r4〉/N

〈1〉/N

SA8/H ∼= V4

〈rs〉/M〈r2 , s〉/M 〈r〉/M

〈r4 , s〉/M 〈r2s〉/M 〈r2〉/M

〈s〉/M 〈r4s〉/M 〈r4〉/M

〈1〉/M

f

g h
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Factoring maps: a quotient between the codomains

Formally, this map is defined by

h : SA8 /N −! SA8 /M, h : gN 7−! gM.

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

N ≤ M ≤ G = SA8

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

r3N

rN

r3sN

rsN

r2N

N

r2sN

sN

H = SA8/N ∼= C4 × C2

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

rM

M

rsM

sM

K = SA8/M ∼= V4

f

g h
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Factoring maps: an embedding between the domains
Let V4 = {e, x , y , xy} and SA8 = 〈r , s〉. The embedding

f : V4 ↪−! SA8, x 7−! s, y 7−! r4

uniquely factors through h : C4 × C2 ! SA8, where (1, 0) 7! r2 and (0, 1) 7! s.

SA8

〈rs〉〈r2 , s〉 〈r〉

〈x , y〉 〈r2s〉 〈r2〉

〈x〉 〈xy〉 〈y〉

〈e〉

G = V4

SA8

〈rs〉〈(0,1),(1,0)〉 〈r〉

〈(0,1),(2,0)〉 〈(1, 1)〉 〈(1, 0)〉

〈(0, 1)〉 〈(2, 1)〉 〈(2, 0)〉

〈(0, 0)〉

H = C4×C2

SA8

〈rs〉〈r2 , s〉 〈r〉

〈r4 , s〉 〈r2s〉 〈r2〉

〈s〉 〈r4s〉 〈r4〉

〈1〉

G = SA8

f

g
h
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Factoring maps: an embedding between the domains

Let V4 = {e, x , y , xy} and SA8 = 〈r , s〉. Here’s that same embedding

f : V4 ↪! SA8, x 7−! r4, y 7−! s

that uniquely factors through h : C4 × C2 ! SA8, where (1, 0) 7! r2 and (0, 1) 7! s.

G = V4

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

e x

r2s r6s

y xy

e x y xy

r3 r7

r r5

r3s r7s

rs r5s

(1,0) (3,0)

(0,0) (2,0)

(1,1) (3,1)

(0,1) (2,1)

H = C4 × C2

K = D4

r3 r7

r r5

r3s r7s

rs r5s

r2 r6

1 r4

r2s r6s

s r4s

f

g h
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Canceling maps: when does existence imply uniqueness?

Proposition (“cancelation laws”)
Suppose we have functions gi : G ! H and hi : H ! K between sets, for i = 1, 2.

If g is surjective, then it right-cancels: h1 ◦ g = h2 ◦ g =⇒ h1 = h2.

G K

H

f

g h1
and

G K

H

f

g h2
=⇒ h1 = h2.

If h is injective, then it left-cancels: h ◦ g1 = h ◦ g2 =⇒ g1 = g2.

G K

H

f

g1 h
and

G K

H

f

g2 h
=⇒ g1 = g2.

Key idea
Injective functions have left inverses; surjective functions have right inverses.
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Failure of uniqueness: a quotient between domains

Let D4 = 〈r , s〉 with subgroups N = 〈r2〉 ∼= C2 and M = 〈r〉 ∼= C4.

Their quotients are V4 ∼= D4/N = {N, rN, sN, rsN} and C2 ∼= D4/M = {M, sM}.

Define the functions f : D4 ! C2 and h : V4 ! C2 as follows:

D4

V4

C2

g

f

h

r

rN

rM

g

f

h

s

sN

sM

g

f

h

We must have g : 1 7! N. Since f : r 7! M, then g(r) ∈ Ker(h) = {rN,N}.

If g(r) = N, then g is not surjective, but we still have f = h ◦ g.

Warning!
The homomorphism g : D4 ! V4 is not uniquely defined! (r 7! N would work too)

Moral: commutative diagrams can be deceiving!
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Failure of uniqueness: a quotient between domains

Multiple maps gi make this diagram commute; both r 7! rN and r 7! N work.

D4

〈r2, s〉 〈r〉=M 〈r2, rs〉

〈s〉 〈r2s〉 〈r2〉=N 〈r3s〉 〈rs〉

〈1〉

D4/N∼=V4

〈r2 , s〉/N 〈r〉/N 〈r2 , rs〉/N

〈s〉/N 〈r2s〉/N 〈r2〉/N 〈r3s〉/N 〈rs〉/N

〈1〉/N

D4/M∼=C2

〈r2 , s〉/M 〈r〉/M 〈r2 , rs〉/M

〈s〉/M 〈r2s〉/M 〈r2〉/M 〈r3s〉/M 〈rs〉/M

〈1〉/M

f

gi h

For surjective maps, h ◦ g1 = h ◦ g2 6⇒ g1 = g2.
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Failure of uniqueness: a quotient between domains

Note that gi : D4 ! V4 need not be surjective for the following diagram to commute.

rs r3s

s r2s

r r3

1 r2

G = D4
rs r?s

s r?s

r r3

1 r2

H = D4/〈r2〉 ∼= V4

gi(rs) = ?

gi(s) = ?

gi(r) = rN

gi(1) = N

K = D4/〈r〉 ∼= C2

rs r3s

s r2s

r r3

1 r2

sM

M

f

gi h

Any choice of gi (r) ∈ {N, rN} and gi (s) ∈ {sN, rsN} would work.
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Failure of uniqueness: an embedding between codomains

Consider two maps from G = C2 = {1, a} into H = V4 = {e, x , y , xy} and K = D4 = 〈r , s〉:

f : C2 −! D4, f (a) = r2, g : C2 −! V4, f (a) = x .

There are multiple embeddings hi : V4 ↪! D4 that make this diagram commute:

D4

〈r2 , s〉 〈r〉 〈r2 , rs〉

〈s〉 〈r2s〉 〈a〉 〈r3s〉 〈rs〉

〈1〉

G = C2

D4

〈r2 , s〉 〈r〉 〈r2 , rs〉

〈s〉 〈r2s〉 〈a〉 〈r3s〉 〈rs〉

〈1〉

H = V4

D4

〈r2 , s〉 〈r〉 〈r2 , rs〉

〈s〉 〈r2s〉 〈r2〉 〈r3s〉 〈rs〉

〈1〉

K = D4f

g hi

For injective maps, h1 ◦ g = h2 ◦ g 6⇒ h1 = h2.
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Failure of uniqueness: an embedding between codomains

Here is another way to see why there are multiple embeddings hi : V4 ↪! D4 that make this
diagram commute:

rs r3s

f r2s

y xy

1 a

G = C2
rs r3s

s r2s

y xy

e x

H = V4

rs r3s

s r2s

r r3

1 r2

K = D4

f

g hi

For injective maps, h1 ◦ g = h2 ◦ g 6⇒ h1 = h2.
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Factoring non-homomorphisms

Definition
Let G/N be a set (not necessarily a group) of equivalence classes. The map φ from G
descends to a map from G/N if it factors through the canonical quotient π : G ! G/N.

For example, we have seen that:

the map φ : G ! clG (H) descends to a bijection G/NG (H)! clG (H).

G

G/NG (H)

clG (H)

π ι

φ
g

Ng

g−1Hg

π ι

φ

the map φ : G ! clG (g) descends to a bijection G/CG (g)! clG (g).

For a fixed s ∈ S, φ : G ! orb(s) descends to a bijection G/ stab(s)! orb(s).

G

G/ stab(s)

orb(s)

π ι

φ
g

Hg

g.φ(s)

π ι

φ
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Motivating the co-universal property of quotient groups

Definition
Given H ≤ G , the canonical inclusion map is

ι : H ↪! G , ι : h 7−! h.

If H E G , the canonical quotient map is

π : G −! G/H, π : g 7−! gH.

There does not exist a homomorphism φ : Z3 ! Z4 with φ(1) = 1. To formalize this:

the canonical quotient f : Z� Z4 does not factor through g : Z� Z3.

That is, there does not exist φ : Z3 ! Z4 making this diagram commute:

Z

Z3

Z4

π

f

φ

1

1

1

π

f

φ

Preview: such a map exists iff Ker(π) ≤ Ker(f ), i.e., f collapses at least as much as π.
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Motivating the co-universal property of quotient groups

Does φ : Z8 ! Z12, where φ(1) = 3, define a homomorphism?

Is there a homomorphism φ making the following diagram commute?

Z

Z8

Z12

π

f

φ

1

1

3

π

f

φ

Note that Ker(f ) = 4Z is a subgroup of Ker(π) = 8Z, and so f factors through π.

Not only does φ exist, it is automatically unique by the cancellation laws.
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The co-universal property of quotient groups

Theorem
Let N E G and f : G ! K be a homomorphism such that N ≤ Ker(f ). Then

1. f uniquely factors through π : G ! G/N (i.e., ∃!h : G/N ! K such that g = h ◦ π).
2. h is injective iff Ker(f ) = N.

Proof (i)

Assume WLOG that f is onto (otherwise, take K = Im(f )). Define h : G/N ! H by

G

G/N

K

π

f

h

x

xN

f (x)

π

f

h

Well-defined: If xN = yN, then y−1xN = N, so y−1x ∈ N = Ker(π) ≤ Ker(f ). Now,

f (y−1x) = 1 =⇒ f (y)−1f (x) = 1 =⇒ h(xN) = f (x) = f (y) = h(yN). X

Homomorphism: h(xNyN) = h(xyN) = f (xy) = f (x)f (y) = h(xH)h(yN). X

Uniqueness: Follows from existence, since f and π are quotients (cancellation laws). X
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The co-universal property of quotient groups

Theorem
Let N E G and f : G ! K be a homomorphism such that N ≤ Ker(f ). Then

1. f uniquely factors through π : G ! G/N (i.e., ∃!h : G/N ! K such that g = h ◦ π).
2. h is injective iff Ker(f ) = N.

Proof (ii)
Assume WLOG that f is onto. We just found the unique h such that

G

G/N

K

π

f

h

x

xN

f (x)

π

f

h

Let H = Ker(f ), and note that

Ker(h) =
{
xN | f (x) = 1K

}
=
{
xN | x ∈ H

}
= H/N.

Note that h is injective iff |Ker(h)| = 1, or equivalently, H = N. �
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Co-universal property of quotient groups ⇒ FHT

Corollary: Fundamental homomorphism theorem
If f : G ! H is a homomorphism, then G/Ker(f ) ∼= Im(f ).

Proof
Let K = Im(f ) and N = Ker(f ) with canonical quotient map π : G ! G/N.

By construction, Ker(f ) = N = Ker(π).

By the co-universal property of quotient maps, f factors through the quotient:

G

G/N

Im(f )

π

f

ι

x

xN

f (x)

π

f

ι

Since Ker(f ) = N, the map ι is injective by Part (ii) of the previous theorem.

Therefore, ι is an isomorphism. �

M. Macauley (Clemson) Chapter 7: Universal constructions Math 8510, Visual Algebra 19 / 97

mailto:macaule@clemson.edu


Abstracting the (co)-universal property

To motivate where we’re going, let’s rephrase what we just did as

“G/N is the largest quotient that collapses N, in that any other homomorphism
collapsing N factors through π : G ! G/N uniquely.”

G

G/N

K

π

f

h

x

xN

f (x)

π

f

h

Compare this to what we know about the commutator subgroup G ′:

“G/G ′ is the largest abelian quotient of G, in that any other homomorphism to an
abelian group factors through α : G ! G/G ′ uniquely.”

G

G/G ′

A

α

f

h

x

xG ′

f (x)

α

f

h
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Abstracting the (co)-universal property

The co-universal property of quotients came with a distinguished (maximal)

group G/N, and

canonical map π : G ! G/N.

Definition
A co-universal pair (C , χ) for a group G w.r.t. a property consists of:

a group C , with

an incoming map χ : G ! C ,

such that every f : G ! H with the same property factors through χ uniquely.

I.e., there is a unique homomorphism h : C ! H between co-domains such that f = h ◦ χ.

G

C

H

χ

f

h
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Abstracting the (co)-universal property

Proposition
If G has a co-universal pair (C , χ) w.r.t. some property, C is unique up to isomorphism.

Proof
Let (C , χ) and (C ′, χ′) be co-universal. Start with (C , χ), and take H = C ′ and f = χ′.

By definition, ∃!h : C ! C ′ such that χ′ = h ◦ χ. Reverse the roles, and we get:

G

C

C ′

χ

χ′

h

G

C ′

C

χ′

χ

h′

We can “stack” one diagrams on the other, and vice-versa:

G

C

C ′

C

χ

χ

χ′

h

h′

IdC

G

C ′

C

C ′

χ′

χ′

χ

h′

h

IdC ′

By uniqueness, h ◦ h′ = IdC (left), and h′ ◦ h = IdC ′ (right). Thus, C ∼= C ′. �
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A co-universal property and nilpotency

Recall that we characterized nilpotent groups via iterative “maximal central descents.”

Given N E G , the maximal central descent [G ,N] is characterized as being

“the smallest subgroup L such that N/L is central in G/L”.

We can phrase this as a co-universal property.

Consider (L, λ), where L = [G ,N] and λ : G ! G/L is the canonical quotient.

Co-universal property of central descents (HW)

Let N E G and f : G ! K for which f (N) is central. Then f uniquely factors through the
canonical quotient map λ : G ! G/L, where L = [G ,N].

That is, there is a unique homomorphism h : G/L! K for which f = h ◦ λ.

G

G/L

K

λ

f

h

x

xL

f (x)

λ

f

h
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Universal vs. co-universal properties

We call the examples we’ve seen co-universal because the map is between the co-domains.

The “dual” version, where the maps is between the domains, are universal properties.

Most books don’t distinguish these two, and use “universal” for both.

The examples we’ve seen were maximal quotients. Let’s now look at maximal subgroups.

Universal property of centers
Let H ≤ G for which xz = zx for all z ∈ H and x ∈ G . The canonical inclusion g : H ↪! G
uniquely factors through ζ : Z(G) ↪! G .

That is, there is a unique embedding g : H ↪! Z(G) for which f = ζ ◦ g.

H

Z(G)

G

g

f

ζ

z

z

z

g

f

ζ
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Another universal property

Universal property of central ascents
Given N E G , suppose that H/N ≤ Z(G/N). The canonical inclusion H/N ↪! G/N
uniquely factors through ζ : Z(G/N) ↪! G/N.

That is, there is a unique embedding g : H/N ↪! Z(G/N) for which f = ζ ◦ g.

H/N

Z(G/N)

G/N

g

f

ζ

hN

hN

hN

g

f

ζ

G

Z

H

N

maximal
central ascent

central
ascents

you are here

G/N

Z/N = Z(G/N)

H/N

N/N

central
subgroups
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Universal pairs and universal constructions

Definition
A universal pair (U, υ) for G w.r.t. a property consists of a group U and map υ : U ! G ,
such that every other f : H ! G with the same property factors through υ uniquely.

That is, ∃!g : H ! U between the domains such that f = υ ◦ g.

G

U

H

υ

f

g

Proposition (HW)

If G has a universal pair (U, υ) w.r.t. some property, then U is unique up to isomorphism.

It’s not standard or necessary to characterize a simple concept like Z(G) with a universal
property. We did it as a “warm up.”

Soon, we’ll define concepts by a (co-)universal property.

These are examples of universal constructions.
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Motivation: direct product vs. direct sums

Open-ended question

What is the limit of Rn =
{

(x1, . . . , xn) | xi ∈ R
}
, as n !∞?

Define R∞ to be the space of all infinite sequences

R∞ :=

∞∏
i=1

R := R× R× R× · · · =
{

(a1, a2, a3, . . . ) | ai ∈ R
}
.

This space contains “vectors” such as (1, 1, 1, . . . ). We’ll call it the “direct product.”

Define E∞ to be the space of all finite sums, like

e = a1e1 + · · ·+ anen =

n∑
i=1

aiei , ||v|| =
√
a21 + · · ·+ a2n.

We’ll call this the “direct sum”.

E∞ :=

∞⊕
i=1

Rei : = Re1 ⊕ Re2 ⊕ Re3 ⊕ · · · =

{ k∑
i=1

aiei | ai ∈ R, k ≥ 1

}
∼=
{

(a1, a2, a3, . . . ) | ai ∈ R, all but finitely many aj are zero
}
.
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Motivation: direct product vs. direct sums
Define the canonical quotient maps for each i = 1, 2, . . . as

πi : R× R× · · · −! R, πi : (a1, a2, . . . ) 7−! ai .

The direct product is the “smallest P that projects onto each factor.”

Given any family fi : X ! R of maps, each fi factors through the projection πi : P ! R.

X

R R×R×· · · R

f
f1 f2

π1 π2

x

a1 (a1, a2, . . . ) a2

f
f1 f2

π1 π2

Let’s see why this fails if we tried to use E∞ for P:

X = R×R×· · ·

R Re1⊕Re2⊕· · · R

f
f1 f2

π1 π2

“too small”

x = (a1, a2, . . . )

a1 ??? a2

@f
f1 f2

π1 π2

M. Macauley (Clemson) Chapter 7: Universal constructions Math 8510, Visual Algebra 28 / 97

mailto:macaule@clemson.edu


Motivation: direct product vs. direct sums
Define the natural inclusion map for each j = 1, 2, . . . as

ιj : Rej ↪!
∞⊕
i=1

Rei , ιj : ajej 7−! ajej

The direct sum is the “smallest S that each factor embeds into.”

Given any family fj : Rej ! X of maps, each ιj factors through the embedding ιj : Rej ↪! S.

X

Re1 Re1⊕Re2⊕· · · Re2

f
f1 f2

ι1 ι2

xj

a1e1 ajej a2e2

f
f1 f2

ι1 ι2

Let’s see why this fails if we try to use R∞ for S:

Re1⊕Re2⊕· · ·

Re1 R×R×· · · Re2

f
ι1 ι2

ι1 ι2

“too big”

???

(1, 1, . . . )

@f
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Returning to groups
Let

{
Gα | α ∈ A

}
be a nonempty family of groups. We will define their product and

co-product via a universal construction.

H

P

Gα

g

fα

πα

“product”

Gα

S

H

ια

fα

h

“co-product”

Remark
Existence of the map needed to make these diagrams commute does not imply uniqueness
from the cancellation laws – each is the “wrong type” of diagram for that.

The fact that there are such groups that guarantee uniqueness indicates that the
definitions are capturing something fundamentally important.

Definition
The product of {Gα | α ∈ A} is a group P with a family of homomorphisms{
πα : P ! Gα | α ∈ A

}
, satisfying:

Given any group H and homomorphisms fα : H ! Gα, there is a unique homomor-
phism g : H ! P such that πα ◦ g = fα for all α ∈ A.
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Products: surjectivity and uniqueness

Proposition

If
{
Gα | α ∈ A

}
has a product, it is unique up to isomorphism, and each πα is surjective.

Proof
We’ve shown uniqueness.

To show that πα is surjective, consider πβ : P ! Gβ , and take H = Gα.

Define fβ to be the identity map if β = α and the trivial map otherwise. That is,

fα : Gα −! Gβ , fα(x) =

{
x , α = β

1, α 6= β.

Every element x ∈ Gβ has a πβ-preimage, g(x) ∈ P.

Gα

P

Gβ

g

fα (trivial)

πβ

α 6= β

Gα

P

Gβ

g

fα = Idβ

πβ

α = β

x

g(x)

x

g

fα = Idβ

πβ

α = β
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Products: existence

Proposition

The product of
{
Gα | α ∈ A

}
is the Cartesian product, P =

∏
α∈A

Gα.

Proof
Define the canonical projection maps as

πβ : P −! Gβ , πβ : (xα)α∈A 7−! xβ .

Suppose we have another family of maps fα : H ! Gα, for each α ∈ A.

Goal. Show ∃!g : H ! P such that fα = πα ◦ g for all α ∈ A.

H

∏
α∈A

Gα

Gβ

g

fβ

πβ

x

(fα(x))α∈A

fβ(x)

g

fβ

πβ

Uniqueness. Suppose ∃h : H ! P for which fα = πα ◦ h for all α ∈ A.

This means πα ◦ g = πα ◦ h. Take x ∈ H, note that

h(x)β = πβ
(
h(x)

)
= fβ(x) = πβ

(
g(x)

)
= g(x)β . �
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Co-products

Definition

The co-product of
{
Gα | α ∈ A

}
is a group S with a family of homomorphisms{

ια : Gα ! S | α ∈ A
}
, satisfying:

Given any group H and homomorphisms fα : Gα ! H, there is a unique homomor-
phism h : S ! H such that h ◦ ια = fα for all α ∈ A.

Gα

S

H

ια

fα

h

Exercise (HW)

If
{
Gα | α ∈ A

}
has a co-product, it is unique up to isomorphism, and each ια is injective.

Showing existence of a co-product is trickier – it a construction that we have not yet seen.

The product of C2 and C2 has order 4. The co-product is infinite.
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Categories

Some constructions we’ve recently seen have analogues for other mathematical objects.

We can define the product and coproduct of sets, topological spaces, rings, vector spaces,
etc.

Many structural results carry over, so we’d like to generalize these in a common framework.

The mathematical field that addresses these questions is called category theory.

Definition
A category C consists of

a class Ob(C) of objects,

a class Hom(C) of morphisms between objects, with identities, closure, and
associativity.

Examples of “objects” include sets, groups, rings, vector spaces, topological spaces,
etc.,

”Morphisms” are meant to be “structure-preserving maps.”
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Categories
Think of the category C = Grp of groups as a massive directed multigraph, where

each node represents a group

there is a directed edge from A to B for each homomorphism f : A! B.

We require: identity, composition, and associativity.

A

IdA

B

IdB

f

g

A B C

IdA IdA IdC

f g

g ◦ f

Denote the morphisms from A to B by HomC(A,B).

(i) Every group has an identity morphism: for every A ∈ Ob(C), there is
IdA ∈ HomC(A,A) satisfying

f ◦ IdA = f , for all f ∈ HomC(A,B), IdA ◦g = g, for all h ∈ HomC(B,A).

(ii) Morphisms are closed under composition:

If f ∈ HomC(A,B) and g ∈ HomC(B,C), then g ◦ f ∈ HomC(A,C).

(iii) Composition of morphisms is associative:

If f ∈ HomC(A,B), g ∈ HomC(B,C), h ∈ HomC(C ,D), then h ◦ (g ◦ f ) = (h ◦ g) ◦ f .
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Abstracting the notion of “one-to-one” and “onto”

Definition
Let f , f1, f2 ∈ HomC(A,B) and g, g1, g2 ∈ HomC(B,C). Then

1. g is a monomorphism if g ◦ f1 = g ◦ f2 implies f1 = f2.

2. f is an epimorphism if g1 ◦ f = g2 ◦ f implies g1 = g2,

Sometimes, we’ll say “mono” and “epi” (nouns) or monic and “epic” (adjectives).

A morphism f ∈ HomC(A,B) is an isomorphism if it has a two-sided inverse.

That is, if ∃g ∈ HomC(B,A) such that g ◦ f = IdA and f ◦ g = IdB .

We say A and B are equivalent.

A B C
f1

f2

g

“monomorphism” (one-to-one)

A B C
f g1

g2

“epimorphism” (onto)

A

IdA =g◦f

B

IdB = f ◦g

f

g

“equivalent” (isomorphic)
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Abstracting the notion of “product” and “coproduct”

Definition
Consider a category C and a non-empty collection {Bi | i ∈ I} of objects.

A product for {Bi} is P ∈ Ob(C) with a family {πi ∈ Hom(P,Bi ) | i ∈ I
}
such that:

Given any A ∈ Ob(C) and
{
fi ∈ HomC(A,Bi ) | i ∈ I

}
, there is a unique g ∈

HomC(A,P) such that πi ◦ g = fi for all i ∈ I .

A coproduct for {Bi} is S ∈ Ob(C) with {ιi ∈ Hom(Ai ,S) | i ∈ I
}
such that:

Given any B ∈ Ob(C) and family
{
fi ∈ HomC(Ai ,B) | i ∈ I

}
, there is a unique

h ∈ HomC(S,B) such that h ◦ ιi = fi for all i ∈ I .

A

P

Bi

g

fi

πi

“product”

Ai

S

B

ιi

fi

h

“co-product” (1)

It can be shown that the πi ’s are epimorphisms, and ιi ’s are monomorphisms.
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A few counterintuitive facts

Isomorphisms 6= mono + epi! In the category Rng, the non-surjective morphism

g : Z −! Q, g(n) = n

is both monic and epic.

R Z Q
g1

g2

f
Z Q R

g h1

h2

The equality f ◦ g1 = f ◦ g2, implies g1 = g2, and h1 ◦ g = h2 ◦ g, forces h1 = h2.

However, g is not an isomorphism because it does not have a left or a right inverse.

The same concept across different categories can seem very different!
Category Objects Morphisms Product coproduct

Set sets functions Cartesian product disjoint union
Grp groups homomorphisms direct product free product
Ab abelian groups homomorphisms direct product direct sum
Ring rings w/ 1 ring homomorphisms direct product free product
Field fields field embeddings none none
VectF F-vector spaces linear functions direct product direct sum
Top topological spaces continuous maps product topology disjoint union
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A functor from Top to Grp

Sometimes, there are structure-preserving maps between categories.

X = T2

•x0

a

b
•x0

a

Y = S1

π1(X) ∼=
〈
a, b | ab = ba

〉
∼= Z× Z

...
...

...

. . . . . .

. . . . . .

. . . . . .

...
...

...

π1(Y) ∼=
〈
a |

〉 ∼= Z
. . . . . .

f
continuous map

f∗
group homomorphism

π1 π1

This is an example of a functor.
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A functor from Top to Grp

The fundamental group of X is the group π1(X ) of all “loops up to equivalence.”

A continuous map f : X ! Y induces a homomorphism

f∗ : π1(T 2) −! π1(S1), f∗ : (a, b) 7−! a.

Formally, π1 is a functor from Top• to Grp, defined as:

π1 : Ob(Top•) −! Ob(Grp)

X 7−! π1(X )

F : Hom(Top•) −! Hom(Grp)

X f
! Y 7−! π1(X )

f∗! π1(Y )

For arbitrary (pointed) topological spaces (X , x0) and (Y , y0):

X Y

π1(X ) π1(Y )

f

π1

f∗

π1

f is a contin. b/w topological spaces, with f (x0) = y0

f∗ is a homomorphism b/w fundamental groups
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Covariant and contravariant functors

Definition
A (covariant) functor F from C to D is a function that sends

objects A of C to objects F(A) of D,

morphisms f : A! B in C to morphisms F(f ) : F(A)! F(B) in D satisfying:

F(IdA) = IdF(A) for all A ∈ Ob(C)

F(g ◦ f ) = F(g) ◦ F(f ) for all morphisms f : A ! B and g : B ! C .

A B C
f g

g ◦ f

F(A) F(B) F(C)
F(f ) F(g)

F(g) ◦ F(f )

There is a “dual” type of functor, called contravariant, that reverses the arrows.

That is, they send A f
−! B to F(B)

F(f )
−! F(A)

A B C
f g

g ◦ f

F(A) F(B) F(C)
F(f ) F(g)

F(g) ◦ F(f )
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A contravariant functor from linear algebra
Let V ∈ Ob(VectR) be an n-dimensional vector space.

The dual space V ∗ ∈ Ob(VectR) consists of all linear scalar functions ` : V ! R.

Think of:

elements in V as columns vectors,

elements in V ∗ as row vectors.

` : V −! R, `(v) =
[
a1 a2 · · · an

]︸ ︷︷ ︸
`∈V ∗


v1
v2
...

vn


︸ ︷︷ ︸
v∈V

= a1v1 + a2v2 + · · ·+ anvn.

A linear map A : V !W can be represented by an m × n matrix, where dim(W ) = m.

Think of this as left-multiplication by column vectors, Av = w :

A : V −!W ,


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


︸ ︷︷ ︸

A∈Hom(V ,W )


v1

v2
...

vn


︸ ︷︷ ︸
v∈V

=


w1
w2
...

wm


︸ ︷︷ ︸
w∈W

.
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A contravariant functor from linear algebra
The transpose is a linear map At : W ∗ ! V ∗.

Think of this as right-multiplication by row vectors, w tAt = v t :

At : W ∗ −! V ∗,
[
w1 w2 · · · wm

]︸ ︷︷ ︸
w t∈W ∗


a11 a21 · · · an1
a12 a22 · · · an2
...

...
. . .

...

a1m a2m · · · anm


︸ ︷︷ ︸

At∈Hom(W ∗,V ∗)

=
[
v1 v2 · · · vn

]︸ ︷︷ ︸
v t∈V ∗

Formally, we have a contravariant functor:

F : Ob(VectF) −! Ob(VectF)

V 7−! V ∗

F : Hom(VectF) −! Hom(VectF)

v A
7! w 7−! w t A∗

7! v t

Notice how the arrow on the bottom of the following commutative diagram is reversed; this
is contravariance.

V W

V ∗ W ∗

A

F

A∗
F

A ∈ Hom(V ,W )

A∗ ∈ Hom(W ∗,V ∗)
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Abelianization, as a functor from Grp to Ab
Consider the functor sending a group G to its abelianization A ∼= G/G ′ = G/[G ,G ]:

F : Ob(Grp) −! Ob(Ab)

G 7−! G/G ′

F : Hom(Grp) −! Hom(Ab)

g 7! f (g) 7−! gG ′ 7! f (g)H ′

G = C4oooC4
C4oC4

C4×C2 C4×C2 C4×C2

C4 C4 C4 C4 C4 C4V4

C2 C2 C2

C1

H ∼= Q8
C4oC4

C4×C2 C4×C2 C4×C2

C4 C4 C4 C4 C4 C4V4

C2 C2 C2

C1

G/G′ ∼= C4×C2
C4×C2

C4 C4 V4

C4 C2 C4

C2

H/H′ ∼= V4
V4

C2 C2 C2

C1

g f (g)

gG ′ f (g)H ′

f

F

F(f )

F

f

F F

F(f )
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Initial and terminal objects

Definition
An object I ∈ Ob(C) is initial if for each Ci ∈ Ob(C), there is a unique πi ∈ HomC(I ,Ci ).

An object T ∈ Ob(C) is terminal if for each Ci ∈ Ob(C), there is a unique
ιi ∈ HomC(Ci ,T ).

An object that is initial and terminal is called a zero object.

Sometimes, initial objects are called universal or coterminal, and terminal objects are final
or couniversal.

Category Objects Initial objects Terminal objects Zero objects

Set sets ∅ every {x} none

Grp groups 〈e〉 〈e〉 〈e〉

Ab abelian groups 〈0〉 〈0〉 〈0〉

Rng rings {0} {0} {0}

Ring rings w/ 1 Z {0} none

Field fields none none none

Fieldp fields w/ char. p > 0 Zp none none

VectF F-vector spaces {0} {0} {0}

Top topological spaces ∅ every {x} none
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Initial and terminal objects

Proposition
Any two initial objects in a category C are equivalent.

Proof
Let I and J be initial.

Since I is initial, there is a unique morphism f ∈ HomC(I , J).

Since J is initial, there is a unique morphism g ∈ HomC(J, I ).

The morphism g ◦ f is in HomC(I , I ), as is IdI (below, left).

I I

g ◦ f

IdI

J J

f ◦ g

IdJ

However, since I is initial, there must be a unique morphism in HomC(I , I ), so g ◦ f = IdI .

Similarly, f ◦ g and IdJ are both in HomC(J, J) (above, right).

By uniqueness, f ◦ g = IdJ , hence I ∼= J. �
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Uniquess of products
Suppose

{
Bi | i ∈ I

}
in C has product P, with projections πi : P ! Bi .

Define a new category B:

objects: families of maps
{
A

fi−! Bi
}

morphisms: A
g
−! C that makes the following diagram commute.

g ∈ HomB
(
A

fi−! Bi , C
hi−! Bi

)
A

C

Bi

g

fi

hi

A terminal object in B is a family
{
P

πi−! Bi
}
such that for any

{
A

fi−! Bi
}
, there exists a

unique g ∈ HomC(A,P) that makes the diagram (left) commute:

A

P

Bi

∃!g

fi

πi

A

∏
i∈I

Bi

Bi

∃!g

fi

πi

That is, the terminal object is the product! Thus, products are unique up to equivalence.
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Uniquess of coproducts and zero morphisms
We can construct an analogous category where the initial object is the coproduct.

Ai

S

B

gi

fi

∃!h

“ initial”

h ∈ HomA
(
Ai

gi−! S,Ai
fi−! B

)

A

P

Bi

∃!g

fi

hi

“terminal”

g ∈ HomB
(
A

fi−! Bi ,P
hi−! Bi

)
Though each πi ∈ HomC(P,Bi ) need not be epic, there are conditions that guarantee this.

Definition
Let C be a category with a zero object, 0 ∈ Ob(C). The zero morphism 0AB ∈ HomC(A,B)
is the composition of the unique maps A! 0! B.

A B

B C

0AB

f

0B0

g
0AC
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Zero morphisms

Proposition
If 0 ∈ Ob(C), the projection morphisms πi ∈ HomC(P,Bi ) of a product are epimorphisms.

Proof

Fix α ∈ I , and define the family of maps
{
fi ∈ HomC(Bα,Bi ) | i ∈ I

}
as

fi : Bα −! Bi , fi =

{
IdBα , i = α

0Bi0, i 6= α.

By the universal property of products, for each i ∈ I , we have:

Bα

P

Bi

∃!gi = gα

fi = IdBα

πi = πα

i = α

Bα

P

Bi

∃!gi

fi = 0Bi 0

πi

i 6= α

To show πα is epic, we need to verify left-cancellation.

Consider f , g ∈ HomC(Bα,C) such that f ◦ πα = g ◦ πα.
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Zero morphisms

Proposition
If 0 ∈ Ob(C), the projections πi ∈ HomC(P,Bi ) from a product are epimorphisms.

Proof
It suffices to show that f = g.

Bα

P

Bα C

gα

fα = IdBα

πα

f

g

By the commuativity of the diagram, we have

f = f ◦ IdBα = f ◦ (πα ◦ gα) = (f ◦ πα) ◦ gα = (g ◦ πα) ◦ gα = g ◦ (πα ◦ gα) = g ◦ IdBα = g,

whence πα is an epimorphism. �

Proposition (HW)

If 0 ∈ Ob(C), the inclusions ιi ∈ HomC(Bi ,S) into a coproduct are monomorphisms.
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Free groups

Throughtout, let S be a nonempty set.

Definition
The free group on S is

F = FS :=
〈
S |

〉
.

That is, FS is generated by S, subject to no relations.

We can think of the free groups as groups where:

elements are words in T = S t S−1, where S−1 :=
{
s−1 | s ∈ S

}
.

the binary operation is concatenation.

The only way to modify words are by substitutions of form ss−1 = 1 and s−1s = 1.

If |S| = |T |, then FS ∼= FT .

If |S| = n <∞, then Fn := FS is free group on n generators, or the free group of rank n.

We’ll soon see how every group is a quotient of a free group.

This can be formalized via a couniversal property.

M. Macauley (Clemson) Chapter 7: Universal constructions Math 8510, Visual Algebra 51 / 97

mailto:macaule@clemson.edu


The free group on 2 generators

1

b

b−1

aa−1

ab

a2

ab-1

a-1b

a−2

a-1b-1

b2

baba-1

b−2

b-1ab-1a-1
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D3 as a quotient of F2

1

f

f

rr2

rf

r2

rf

r2f

r

r2f

1

r2frf

1

r2frf

1

r

r2

f

r2f

rf
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Free groups

Definition
A group F is free on S 6= ∅ if there is a function ι : S ! F such that for any other
θ : S ! G , there exists a unique homomorphism π : F ! G such that θ = π ◦ ι.

S

F

G

ι

θ

π

Proposition
If a free group exists on S 6= ∅, it is unique up to isomorphism, and ι : S ! F is injective.

Proof
We’ve seen uniqueness. Suppose ι is not 1-to-1; take a 6= b in S for which ι(a) = ι(b).

Consider the map θ : S −! Z, θ(s) =


1 s = a
2 s = b
0 s 6∈ {a, b}.

This forces 1 = θ(a) = π(ι(a)) = π(ι(b)) = θ(b) = 2, a contradiction. �
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Free semigroups

Definition
A semigroup is a set X 6= ∅ with associative binary operation.

A homomorphism is a function f : X ! Y with f (x1x2) = f (x1)f (x2) for all x1, x2 ∈ X .

Let Sgp denote the category of semigroups.

Free semigroups exists, are unique up to isomorphism, the map ι : S ! F is injective.

S

X

Y

ι

θ

π

The free semigroup on S = {s} is isomorphic to N = {1, 2, . . . } under addition.
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Free semigroups

Proposition
If S 6= ∅, then there is a free semigroup over S.

Proof
Let X be the set of nonempty words over S, under concatenation:

X = S∪(S×S)∪(S×S×S)∪· · · , (a1, . . . , an)∗(b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

We’ll show this is free over S, with inclusion map

ι : S −! X , ι(s) = s.

Given a function θ : S ! Y to another semigroup, define

π : X −! Y , π : (a1, . . . , an) 7−! θ(a1) · · · θ(an).

Exercise. Check that π is a semigroup homomorphism, and π ◦ ι = θ.

S

X

Y

ι

θ

π
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Free semigroups

Proposition
If S 6= ∅, then there is a free semigroup over S.

Proof (contin.)
Given θ : S ! Y , the function

π : X −! Y , π : (a1, . . . , an) 7−! θ(a1) · · · θ(an).

satisfies π ◦ ι = θ.

Uniqueness: Suppose σ : X ! Y also satisfies σ ◦ ι = θ. Then

σ
(
(a1, . . . , an)

)
= σ

(
ι(a1) · · · ι(an)

)
= σ(ι(a1)) · · ·σ(ι(an))

= θ(a1) · · · θ(an)

= π(ι(a1)) · · ·π(ι(an))

= π
(
ι(a1) · · · ι(an)

)
= π

(
(a1, . . . , an)

)
.

S

X

Y

ι

θ

π

Therefore, X satisfies the co-universal property of free semigroups. �
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Quotient semigroups

Since semigroups lack an inverse, we don’t have kernels, or isomorphism theorems.

But there is a co-universal property of quotient maps.

A group homomorphism f : G ! K partitions G into cosets of Ker(f ).

If this is coarser than the partition of G into cosets of N = Ker(π), then f factors through
π:

G

G/N

K

π

f

h

x

xN

f (x)

π

f

h

A relation R on a semigroup Y is well-defined with respect to · if

xRy and zRw =⇒ (x · z)R(y · w).

Let xR be the equivalence class containing x , and call

π : Y −! Y /R, π : y 7−! yR

the canonical quotient map.

The quotient semigroup of Y is Y /R, with xR · yR := xyR.
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Co-universal property of quotient semigroups

Proposition
The quotient semigroup Y /R satisfies the following co-universal property:

If f : Y ! Z is a semigroup homomorphism such that xRy implies f (x) = f (y),
then ∃!h : Y /R ! Z such that f = h ◦ π.

Y

Y /R

Z

π

f

h

y

yR

z

π

f

h

Proof
Existence follows from the definition: h(yR) = h(π(y)) = f (y), with well-definedness
automatic from xRy ⇒ f (x) = f (y).

Uniqueness comes from the cancellation laws, because π is surjective. �
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Construction of a free group over S

Given S 6= ∅, construct a disjoint set S ′ of “formal inverses”:

S ′ =
{
s ′ | s ∈ S

}
, T = S ∪ S ′.

The bijection s 7! s ′ and inverse s ′ 7! s ′′ := s define a bijection T ! T , where t 7! t ′.

Let X be the free semigroup on T ⊆ X (under natural inclusion).

Call a homomorphism φ : X ! G proper if φ(s ′) = φ(s)−1 for all s ∈ S.

If φ is proper, then φ(t ′) = φ(t)−1 for all t ∈ T .

The only “relation” in a free group: ss−1 = s−1s = 1 for all s ∈ S ⊆ F .

We’ll construct this from the free semigroup by forcing ss ′t = t, for all t ∈ T ⊆ X .

If φ is proper, then

φ(ss ′t) = φ(s)φ(s ′)φ(t) = φ(s)φ(s)−1φ(t) = φ(t).

Define an equivalence relation on X where

xRy iff φ(x) = φ(y) for every proper φ : X ! G .

Exercise: this is well-defined, and so X/R is a semigroup. .
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Construction of a free group over S

We just showed that X/R is a semigroup. Now we’ll show it’s a group.

We’ll write x̄ (not xR), so x̄ ȳ = xy , and x ′ = x̄−1.

Let π : X � X/R be the canonical quotient.

Identity. Choose any s ∈ S and x ∈ X ; we claim that ss ′ = 1.

If φ : X ! G is proper, then φ(ss ′x) = φ(x), which means that xRss ′x in X , thus

x̄ = ss ′x = ss ′ · x , and x̄ = xss ′ = x · ss ′.

Thus, ss ′ is the identity. X

Inverses. Let x = t1 · · · tk ∈ X .

We’ll show that the inverse of x̄ is ȳ , where y = t ′k · · · t
′
1.

If φ is proper, then

φ(xy) = φ(t1 · · · tk t ′k · · · t
′
1)

= φ(t1) · · ·φ(tk )φ(t ′k ) · · ·φ(t ′1)

= φ(t1) · · ·φ(tk )φ(tk )−1 · · ·φ(t1)−1

= 1G = φ(ss ′) for any s ∈ S. X

Thus X/R is a group. �
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Showing that our free semigroup quotient X/R is free

Goal
Given ι : S ! X/R defined by ι(s) = s̄, show that for any map φ : S ! G , there is a
unique homomorphism h : X/R ! G such that φ = h ◦ ι

S

X/R

G

ι

φ

h

s

s̄

φ(s)

ι

φ

h

We’ll build up this diagram in “pieces”, culminating with the following:

S

T

X

X/R

G
i

j

π

φ

θ

f
h

ι
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Showing that our free semigroup quotient X/R is free

Extend φ : S ! G to a map θ : T −! G by setting θ(s ′) = φ(s)−1.

S

T

G

i

φ

θ

s

s

φ(s)

i

φ

θ

Applying the co-universal property of free semigroups to θ : T ! G gives the following:

T

X

G

j

θ

f

s

s

θ(s)

j

θ

f

s ′

s ′

θ(s ′)=φ(s)−1

j

θ

f

Since the homomorphism f is proper, the co-universal property of quotient semigroups
gives:

X

X/R

G

π

f

h

x

x̄

f (x)

π

f

h
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Showing that our free semigroup quotient X/R is free

We know ∃!h : X/R ! G such that f = h ◦ π, but not necessarily φ = h ◦ ι.

S

T

X

X/R

G
i

j

π

φ

θ

f
h

ι

Suppose ∃g : X/R ! G such that φ = g ◦ ι. (Need h = g.)

We have h ◦ π ◦ j ◦ i = g ◦ π ◦ j ◦ i , and we claim that h ◦ π ◦ j = g ◦ π ◦ j .

It is clear that h(π(j(s))) = f (π(j(s)) for all s ∈ S. By construction,

h(π(j(s ′))) = h(s ′) = h(s̄−1) = h(s)−1 = g(s)−1 = g(s̄−1) = g(s ′) = g(π(j(s ′))).

Therefore, θ = h ◦ π ◦ j = g ◦ π ◦ j .

By the co-universal property of free semigroups, ∃!f : X ! G such that θ = f ◦ j .

But both h ◦ π and g ◦ π satisfy this, and so f = h ◦ π = g ◦ π ⇒ h = g �
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Properties of free groups

Proposition
Suppose S,U 6= ∅. Then FS ∼= FU if and only if |S| = |U|.

Proof
“⇒” Case 1: |S| <∞.

Each nonempty R ⊆ S defines an index-2 subgroup, the kernel of

fR : FS −! Z2, fR(s) =

{
0 s ∈ R
1 s 6∈ R

Since FU has the same number of index-2 subgroups, 2|S| − 1 = 2|U| − 1 ⇒ |S| = |U|.

Case 2: |S| =∞.

Let T = S ∪ S−1. Then |FS | = |S| because.

|FS | ≤ 1 + |T |+ |T × T |+ |T × T × T |+ · · · = ℵ0|T | = |S|.

Reversing roles gives |FU | = |U| = |S| = |FS |. X
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Properties of free groups

Proposition
Suppose S,U 6= ∅. Then FS ∼= FU if and only if |S| = |U|.

Proof
“⇐” Fix a bijection β : S ! U and use the co-universal property to get

S

FS

FUU

ιS

β ιU

f

U

FU

FSS

ιU

β−1 ιS

g

We can “stack” these diagrams, two ways, to get:

S

FS

FS

U
FUιS

ιS

β

ιU

f

g

IdFS

U

FU

FU

S
FSιU

ιU

β−1

ιS

g

f

IdFU

By uniqueness, g ◦ f = IdFS and f ◦ g = IdFU , so f and g are inverse isomorphisms. �
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Free objects

A functor F : C ! D is faithful if F : Hom(C)! Hom(D) is injective.

A concrete category is a category C with a faithful functor F : C ! Set.

Definition
Let C be concrete, F ∈ Ob(C), and ι : S ! F a map of sets, where S 6= ∅.

Then F is free on S if for any A ∈ Ob(C) and θ : S ! A, there is a unique π ∈ HomC(F ,A)
such that ι ◦ π = θ.

S

F

A

ι

θ

π

Like we did with products, we can construct a category where free objects are initial:

S

F

A

ι

θ

∃!π

“ initial”
π ∈ HomA

(
S ι
−! F ,S θ

−! A
)
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Free objects

Let Nil be the category of nilpotent groups.

Suppose ι : S ! F is a free object in Nil.

This means that every other nilpotent group G generated by S is a quotient of F :

“ if G is nilpotent with set map f : S ! G, then there exists a unique π : F ! G
such that f = π ◦ ι.”

S

F

G

ι

f

π

Suppose F has nilpotency class n. Then every quotient has nilpotency class ≤ n. (Why?)

Thus, if G = 〈S〉 has nilpotency class n + 1, then 6 ∃ π : F � G .
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Free objects

Let Nil≤n be the category of nilpotent groups of class ≤ n.

If G is a nilpotent group of class ≤ n, then Ln(G) = 〈1〉.

L1(G) = [G ,L0] = [G ,G ] = 〈[g1, g0] | gi ∈ G〉
L2(G) = [G ,L1] = [G , [G ,G ]] = 〈[g2, [g1, g0]] | gi ∈ G〉

L3(G) = [G ,L2] = [G , [G , [G ,G ]]] = 〈[g3, [g2, [g1, g0]]] | gi ∈ G〉
...

...
...

Ln(G) = [G ,Lk−1] = [G , [G , . . . [G ,G ]]] = 〈[gn, [gn−1, . . . [g1, g0]]] | gi ∈ G〉

Proposition
Let F be free on a set S. Then F/Ln(F ) is free in Nil≤n.

“ if G is nilpotent of class ≤ n and f : S ! G, then there exists a unique
π : Fn/Ln(Fn)! G such that f = π ◦ ι.”

S

F/Ln(F )

G

ι

f

π
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Free objects

Proposition
Let F be free on S. Then F/Ln(F ) is free in Nil≤n.

The existence of h : F ! G is because F is free on S.

S

F

F/Ln(F )

G
ι1

g

f

h

π
ι

Since G has nilpotent class ≤ n, we have Ker(g) = Ln(F ) ≤ Ker(h).

Now, π is guaranteed by the co-universal property of quotient maps.

Exercise: Verify that π is the unique map satsifying f = π ◦ ι.
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Direct sums and bases

The direct sum of a family
{
Ai | i ∈ I

}
of groups is⊕

i∈I
Ai =

{
(ai )i∈I ∈

∏
i∈I

Ai with finite support
}
.

If all are abelian, let ej := (ai )i∈I with aj = δij . Every x ∈
⊕

Ai can be written as

x =

n∑
i=1

aiei , ai ∈ Z, n ∈ N.

If A is abelian, the subgroup generated by X ⊆ S are the finite linear combinations:

〈X 〉 =
{
a1x1 + · · ·+ anxn | ai ∈ Z, xi ∈ X

}
.

A basis of A is a subset X ⊆ A for which:

1. A = 〈X 〉.

2. Given distinct x1, . . . , xn ∈ X ,

a1x1 + · · ·+ anxn = 0 =⇒ ai = 0 for all i = 1, . . . , n.
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Direct sums and bases

Assuming the axiom of choice, in a vector space, Every generating set contains a basis.

This fails for abelian groups; e.g., Z = 〈2, 3〉.

Every vector space has a basis, and every v 6= 0 is contained in one.

If an abelian group A has an element x of finite order, no basis can contain it.

Proposition
Let A be an abelian group with basis X . Then every a ∈ A can be written as a unique
(finite) linear combination of elements from X .

Proof
The following defines a homomorphism

f :
⊕
i∈I
Z −! A, f :

n∑
j=1

ajej 7−!
n∑

j=1

ajxj .

It is surjective by Property (1) of a basis, and has trivial kernel by Property (2).

Each way to write x as a linear combination of the basis elements corresponds to an
f -preimage of x .

Uniqueness follows because f is bijective. �
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Free abelian groups

Definition

The free abelian group on S 6= ∅ is F =
⊕
s∈S
Z.

Theorem
Let S 6= ∅. The group

⊕
s∈S Z with ι(s) = es is a free object for S in Ab.

That is, given any f : S ! A there exists a unique h:
⊕

s Z! A such that f = h ◦ ι.

S

⊕
s∈S
Z

A

ι

f

h

s

es

x

ι

f

h

Proof (sketch)
Existence and uniqueness of the desired function h is constructive:

h
( n∑

i=1

asi esi
)

=
( n∑

i=1

asi h(esi )
)

=
( n∑

i=1

asi h(ι(si ))
)

=

n∑
i=1

asi f (si ). �
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Group presentations, formalized

Definition

For any subset R ⊆ FS , the group G =
〈
S | R

〉
is the quotient FS/N where

N :=
⋂

R≤NαEFS

Nα.

Elements in R are called relators.

Big idea

The group
〈
S | R

〉
is the quotient of FS by the smallest normal subgroup containing R.

Exercise: show that
G =

〈
a, b | ab = b2a, ba = a2b

〉
= 〈1〉.

In terms of Cayley graphs and motfis, this means that

aba−1b−2 = 1

and

bab−1a−2 = 1

=⇒

G =
〈
a, b, | a = b = 1

〉
= 〈1〉
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Group presentations, formalized

Given G1 =
〈
S | R1

〉
, define G2 =

〈
S | R2

〉
by adding relations: R1 ⊆ R2.

We have two quotient maps,

π1 : FS −! FS/N1 ∼= G1, π2 : FS −! FS/N2 ∼= G2,

Since N1 = Ker(π1) ≤ Ker(π2) = N2, the co-universal property of quotients gives us:

FS G2

G1

π1

π2

h

Now, suppose G1 =
〈
S1 | R

〉
and G2 =

〈
S2 | R

〉
with S1 ⊇ S2.

Defining R ′ = S1 \ S2, we have

G1 =
〈
S1 | R

〉
, G2 =

〈
S1 | R ∪ R ′

〉
,

and hence a quotient G1 � G2.

Proposition

Given G1 =
〈
S1 | R1

〉
and G2 =

〈
S2 | R2〉 for which S1 ⊇ S2 and R1 ⊆ R2, there is a

quotient G1 � G2. �
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Group presentations, formalized

In many cases, two generating sets that we wish to compare are not subsets of each other.

For example, if S1 = {a, b, c} and S2 = {r , f }, then S1 6⊇ S2.

However, there is θ : S1 � S2 that can be thought of as a “relabeling.”

Saying that “every relation is G1 is a relation in G2” means that every θ(r1) is a relator.

We say that such a map θ respects relations, because it extends to a map θ : R1 ! R2.

Proposition

Suppose G1 =
〈
S1 | R1

〉
and G2 =

〈
S2 | R2

〉
and the following holds:

1. there exists θ : S1 � S2 extending to θ : R1 ! R2,

2. r2 := θ(r1) = 1 for all r ∈ R1.

Then there is a quotient h : G1 � G2. �

FS G2

G1

π1

π2

h
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Group presentations, formalized

Consider the “mystery group” M =
〈
a, b | a4 = b2 = 1, (ab)2 = 1

〉
.

Visually, we are asking what the largest Cayley graph is given several motifs:

a4 = 1

and

(ab)2 = 1

and

b2 = 1

=⇒ ???

Elements in M can be written as aibj , for i = {0, 1, 2, 3} and j = {0, 1}. Thus, |M| ≤ 8.

We’ll show |M| is a multiple of 8, by constructing a homomorphism

θ : M −!
〈[

i 0
0 −i

]
,

[
0 1
1 0

]〉
∼= D4, θ(a) =

[
i 0
0 −i

]
, θ(b) =

[
0 1
1 0

]
.

This respects relations because

(
θ(a)

)4
=
(
θ(b)

)2
=
(
θ(a)θ(b)

)2
=

[
1 0
0 1

]
.

Thus, there is a quotient g : M � D4, and so M ∼= D4.
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Group presentations, formalized

Every group G = 〈a, b〉 satisfying a4 = 1, b2 = 1, and (ab)2 = 1 is a quotient of D4.

a = 1
b = 1

b = 1 ab = 1 a = 1

not a group a2 = 1 not a group

a4 = 1
b2 = 1

(ab)2 = 1

D4 is the largest group
satisfying these relations
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Group presentations, formalized

Overview of the strategy

Given a “mystery” M =
〈
S1 | R1

〉
that we suspect is a “familiar” F =

〈
S2 | R2

〉
:

1. Using the relations, show that |M| ≤ |F |.
2. Identify generators of F that satisfy the relations in M, via a “relabling map”
θ : S1 � S2 that extends to θ : R1 ! R2.

Together, |M| ≤ |F | and M � F forces M ∼= F .

Consider the group M =
〈
a, b, c | a4 = c2 = 1, a2 = b2, ab = ba, ac = ca, a2b = cbc

〉
.

a4 = 1 c2 = 1 a2 = b2 ab = ba ac = ca a2b = cbc

Homework: Establish |M| ≤ 16 by showing that every word in M can be written

aibjck , i ∈ {0, 1, 2, 3}, j ∈ {0, 1}, k ∈ {0, 1},

Then, find a “familiar group” F of order 16 whose generator satisfies these relations.

That will define a quotient π : M � F , and hence |M| ≥ |F | = 16.
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Free products

Proposition

The coproduct of
{
Ai | i ∈ I

}
in Ab is the direct sum, S =

⊕
i Ai :

Aj

⊕
i∈I

Ai

B

ιj

fj

h

aj

ι(aj )

bj

ιj

fj

h

Proof
Let C be the coproduct of the factors, with ιj : Aj ↪! C .

Consider the group B ≤ C generated by the images of all individual factors,

B =
〈
ιj (Aj ) | j ∈ I

〉
, and let g : B ↪! C .

Each b ∈ B can be written as

b =

k∑
j=1

ι(aij ), aij ∈ Aij ,

and so B ∼= S. Let fj : Aj ↪! B be the natural inclusion map.
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Free products

Proposition

The coproduct of
{
Ai | i ∈ I

}
in Ab is the direct sum, S =

⊕
i Ai :

Aj

⊕
i∈I

Ai

B

ιj

fj

h

aj

ι(aj )

bj

ιj

fj

h

Proof (cont.)
By the co-universal property of coproducts, we have:

Aj

C ∼= S

B

ιj

fj

h

aj

ι(aj )

ι(aj )

ιj

fj

h

It is clear that h ◦ g = IdB . It suffices to show that g ◦ h = IdC .
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Free products

Proposition

The coproduct of
{
Ai | i ∈ I

}
in Ab is the direct sum, S =

⊕
i Ai :

Aj

⊕
i∈I

Ai

B

ιj

fj

h

aj

ι(aj )

bj

ιj

fj

h

Proof (cont.)
Since ιj = g ◦ fj and fj = h ◦ ιj , the “small triangles” in the following diagram commute:

Aj

C

B

C

ιj

ιj

fj

h

g

IdC

It follows that ιj = g ◦ h ◦ ιj , but we also have ιj = IdC ◦ιj .

By uniqueness from the co-universal property, g ◦ h = IdC . �
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Free products

The coproduct of two groups A and B in Grp is a construction called the free product.

Given groups A = 〈S1 | R1〉 and B = 〈S2 | R2〉, their free product is

A ∗ B :=
〈
S1 t S2 | R1 t R2

〉
.

If A = 〈a | 〉 = C∞ ∼= Z and B = 〈b | 〉 ∼= C∞, then A ∗ B is the free group F2 = 〈a, b | 〉.

If A and B are nontrivial, their free product is infinite, because

a, ab, aba, abab, ababa, ababab, . . .

are all distinct, assuming a, b 6= 1.

The free product of the groups A = 〈a | a2 = 1〉 ∼= C2 and B = 〈b | b2 = 1〉 ∼= C2 is

A ∗ B =
〈
a, b | a2 = 1, b2 = 1

〉 ∼= D∞

abab aba ab a 1 b ba bab baba · · ·· · ·
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Free products
The free product C3 ∗ C2 is isomorphic to the projective linear group

PSL2(Z) = SL2(Z)/〈−I 〉, where SL2(Z) =

〈[
0 −1
1 0

]
︸ ︷︷ ︸

S

,

[
1 1
0 1

]
︸ ︷︷ ︸

T

〉
.

This is in no way obvious from the generators that we’ve seen, which represent

S : z 7−!
0z − 1
z + 0

= −
1
z
, and T : z 7−!

z + 1
0z + 1

= z + 1.

−2 − 3
2 −1 − 1

2 0 1
2 1 3

2 2
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Free products

Let’s see why the free product C3 ∗ C2 is isomorphic to the projective linear group

PSL2(Z) = SL2(Z)/〈−I 〉.

Elements of PSL2(Z) are cosets of 〈−I 〉 = ±I . Let

SL2(Z) = 〈S,T | S2 = (ST )6 = I 〉, S =

[
0 −1
1 0

]
, T =

[
1 1
0 1

]
, ST =

[
0 −1
1 1

]
,

Then PSL2(Z) ∼= 〈A,B〉, where A = ±ST and B = ±S.

1 b

a

a2

ba

ba2

ab

a2b

bab

ba2b

words w = a· · · words w = b· · ·
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Free products

A Cayley graph of PSL2(Z) = 〈A,B | A3 = B2 = 1〉 ∼= C3 ∗ C2:

−2 − 3
2 −1 − 1

2 0 1
2 1 3

2 2

To verify PSL2(Z) ∼= C3 ∗ C2, it suffices to show that we can’t nontrivially write

I = Ai1B j1Ai2B j2 · · ·Aim−1B jm−1Aim , ik ∈ {0, 1, 2}, jk ∈ {0, 1}.

This will be left as HW.
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Free products

Definition
The free product of a family Gi = 〈Si | Ri 〉 of groups is

∗
i∈I

Gi =
〈⊔

i∈I
Si |

⊔
i∈I

Ri

〉
, where ιj : Gj ↪!∗

i∈I
Gi , ιj (xj ) = xj ,

Exercise

The coproduct of
{
Gi | i ∈ I

}
in Grp is their free product.

That is, given any H and
{
fj : Gj ! H | j ∈ I

}
, there is a unique h : ∗i Gi ! H such that

fj = ιj ◦ h for all j ∈ I .

Gj

∗
i∈I

Gi

H

ιj

fj

h

xj

ι(xj )

yj

ιj

fj

h
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Fiber coproducts in Grp: free products with amalgamation

Suppose A and B are disjoint circles. Gluing them at a point is called their wedge sum.

Product

A× B: “Cartesian product”

•(a0 , b0)

• •a0 b0

Coproduct

At B: “disjoint union”

Coproduct w/ amalgamation

•
a0 = b0

A∨ B: “wedge sum”

In general, we can identify or “glue” two objects along a common subset. Gluing two disks
along their boundaries gives a sphere.

Suppose AE Gi for i = 1, 2, with embeddings αi : A ↪! Gi .

Goal: Take the the coproduct of G1 with G2, and “identify” the common subgroup A.

We can “force” α1(a) ∈ G1 and α2(a) ∈ G2 (in G1 ∗ G2) to be the same by adding relations

α1(a)α2(a)−1 = 1, for all a ∈ A,

and then quotient A ∗ B by the smallest normal subgroup N that contains these relators.

The group G1 ∗A G2 := (G1 ∗ G2)/N is the free product of G1 and G2 amalgamated at A.
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Fiber coproducts in Set: unions

A ∩ B
cat

dog

A = pets

bird

snake

cat

dog

B = 4+ legs
cat

dog rhino

octopus

A ∪ B

bird

snake

cat

dog rhino

octopus

C =
{
venomous,

walks on land,

aquatic
}

α2

ι1

α1 ι2

h1

h2

h
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Fiber coproducts in Grp: free products with amalgamation

G1 ∗ G2 is the smallest group in which both G1 and G2 embeds into “independently.”

I.e., for any other H with this property, those embeddings factor through via G1 ∗G2 ! H.

For i = 1, 2, let ιi : Gi ! (G1 ∗ G2)/N = G1 ∗A G2 be the map ιi : gi 7! giN.

A G1

G2 (G1∗G2)/N

α1

α2 ι1

ι2

(2)

G1 ∗A G2 is the smallest group in which both G1 and G2 embeds into “independently,” while
keeping A identified.

The central product, e.g., DQ8 ∼= D4 ◦ C4 ∼= Q8 ◦ C4, is a direct product with
amalgamation.
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Fiber coproducts in Grp: free products with amalgamation

Suppose G1 and G2 embed into H while keeping A identified:

A G1

G2 H

α1

α2 h1

h2

Then ∃!h : G1 ∗A G2 −! H that makes the following diagram commute:

A G1

G2 G1∗AG2

H

α1

α2 ι1

ι2

h

h1

h2
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Fiber coproducts in a general category

Definition

Let A,B1,B2 ∈ Ob(C) and αi ∈ HomC(A,Bi ) for i = 1, 2. A fiber coproduct (or pushout)
for them is a commutative diagram

A B1

B2 C

α1

α2 ι1

ι2

satisfying the following couniversal property:
For any D ∈ Ob(C) and hi ∈ HomC(Bi ,D) such that if h1 ◦ α1 = h2 ◦ α2, there
exists a unique h ∈ HomC(C ,D) such that h ◦ ιi = hi .

A B1

B2 C

D

α1

α2 ι1

ι2

h

h1

h2
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Fiber coproducts (pushouts)

Proposition
Pushouts are unique up to equivalence.

Proof
Suppose we have two pushouts for A,B1,B2:

A B1

B2 C

α1

α2 ι1

ι2

A B1

B2 D

α1

α2 δ1

δ2

By the co-universal property, we have h ∈ HomC(C ,D) and g ∈ HomC(D,C) such that:

A B1

B2 C

D

α1

α2 ι1

ι2

h

δ1

δ2

A B1

B2 D

C

α1

α2 δ1

δ2

g

ι1

ι2
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Fiber coproducts (pushouts)

Proposition
Pushouts are unique up to equivalence.

Proof (cont.)
We can “stack” these diagrams to get:

A B1

B2 C

D

C

α1

α2 ι1

ι2

h

g

δ1

δ2

ι1

ι2

A B1

B2 C

C

α1

α2 ι1

ι2

IdC

ι1

ι2

By uniqueness from the co-universal property, g ◦ h = IdC .

Stacking them the other way gives h ◦ g = IdD .

Therefore, h and g are inverse isomorphisms, and hence C ∼= D. �
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Fiber coproducts (pushouts)

In Set and Top, pushouts are ordinary unions:

Y ∩ Z Z

Y Y ∪ Z

αZ

αY ιZ

ιY

Siefert van-Kampen theorem
The functor π1 : Top! Grp preserves pushouts.

F(Y ∩ Z) F(Z)

F(Y ) F(Y ∪ Z)

α∗Z

α∗Y ι∗Z

ι∗Y

π1(Y ∩ Z) π1(Z)

π1(Y ) π1(Y ∪ Z)

α∗Z

α∗Y ι∗Z

ι∗Y
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The Siefert van-Kampen theorem

Y ∩ Z

π1(Y ∩ Z) = 〈aba−1b−1〉 ∼= Z

•x0

a

b

Z = D2

π1(Z) = 〈1〉

•x0

a

b

Y = T2 −D2

π1(Y ) = 〈a, b | 〉

•x0

a

b

X = Y ∪ Z = T2

π1(Y ∪ Z) = π1(Y ) ∗π1(Y∩Z) π1(Z) ∼=
〈
a, b |

〉
∗〈aba−1b−1〉 〈1〉

=
〈
a, b | aba−1b−1 = 1

〉 ∼= Z× Z

αZ

ιY

αY
ιZ
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Fiber products / pullbacks (HW)

Definition

Let A1,A2,B ∈ Ob(C) and αi ∈ HomC(Ai ,B) for i = 1, 2. A fiber product (or pullback) for
them is a commutative diagram

P A1

A2 B

π1

π2 α1

α2

satisfying the following universal property:
For any Q ∈ Ob(C) and hi ∈ HomC(Q,Ai ) such that if α1 ◦ h1 = α2 ◦ h2, there
exists a unique h ∈ HomC(Q,P) such that hi = πi ◦ h.

P A1

A2 B

Q

π1

π2 α1

α2

h

h1

h2
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