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Divisibility and factorization

Previously, we saw how to extend a familiar construction (fractions) from Z to other
commutative rings.

Now, we’ll do the same for other basic features of the integers.

Blanket assumption
Unless otherwise stated, R is an integral domain, and R∗ := R \ {0}.

The integers have several basic properties that we usually take for granted:

every nonzero number can be factored uniquely into primes;

any two numbers have a unique greatest common divisor and least common multiple;

for a and b 6= 0 the division algorithm gives us

a = qb + r , where |r | < |b|.

the Euclidean algorithm uses the divison algorithm to find GCDs.

These need not hold in integrals domains! We would like to understand this better.
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Divisibility

Definition
If a, b ∈ R, then a divides b, or b is a multiple of a if b = ac for some c ∈ R. Write a | b.

If a | b and b | a, then a and b are associates, written a ∼ b.

Examples
In Z: n and −n are associates.

In R[x ]: f (x) and c · f (x) are associates for any c 6= 0.

This defines an equivalence relation on R∗, and partitions it into equivalence classes.

The unique maximal class is {0} (because r | 0, ∀r ∈ R).

The unique minimal class is U(R) (because u | r , ∀u ∈ U(R), r ∈ R).

Elements in the minimal classes of R − U(R) are called irreducible.

Exercise
The following are equivalent for a, b ∈ R:

(i) a ∼ b, (ii) a = bu for some u ∈ U(R), (iii) (a) = (b).

M. Macauley (Clemson) Chapter 9: Domains Math 8510, Visual Algebra 3 / 88

mailto:macaule@clemson.edu


Divisibility via ideals

Remark
For nonzero a, b ∈ R,

a | b ⇔ (b) ⊆ (a).

Key idea
Questions about divisibility are cleaner when translated into the language of ideals.

R=(1)

(2)
(3)

(4)
(6)

(8)
(12)

(24)

subring lattice; 〈d〉 = (d)

24

12
8

6
4

3
2

1

divisor lattice

Divisibility is well-behaved in rings where every ideal is generated by a single element.
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Divisibility via ideals

Remark
Divisors and multiples of a ∈ R are easily identified in the ideal lattice:

1. (nonzero) multiples are “above” (a), 2. divisors are “below” (a).

The GCD and LCM have nice interpretations in the divisor and ideal lattices.

96

48

16
12

4

2

n

m = lcm(a, b)

a
b

d = gcd(a, b)

c (n)

(a) ∩ (b) = (m) =
(

lcm(a, b)
)

(a)
(b)

(a, b) = (d) =
(

gcd(a, b)
)

(c)

Key idea
Everything behaves nicely if all ideals have the form I = (a), for some a ∈ R.
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Divisibility, factorization, and principal ideals

Definition
An ideal generated by a single element a ∈ R, denoted I = (a), is called a principal ideal.

If non-principal ideals lurk, we can lose nice properties like unique factorization.

Consider the following examples in Z[
√
−5]:

29 = (3− 2
√
−5)(3 + 2

√
−5), 3 · 3 = 9 = (2−

√
−5)(2 +

√
−5).

Z[
√
−5]

Z(3, 2−
√
−5) (3, 2+

√
−5)

(2−
√
−5) (2+

√
−5)(3)

(9)

...

...
...

. . . . .
.

Z[
√
−5]

(3−2
√
−5) Z (3+2

√
−5)

(29)

The element 29 is reducible, whereas 3 is irreducible.

Neither of the ideals (3) and (29) are prime in Z[
√
−5].
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Principal ideal domains

Definition
If every ideal of R is principal, then R is a principal ideal domain (PID).

Divisibility via ideals: a summary
Let R be an integral domain.

1. u is a unit iff (u) = R,

2. a | b iff (b) ⊆ (a),

3. a and b are associates iff (a) = (b).

4. a is irreducible iff there is no (b) ) (a), i.e., if (a) is a maximal principal ideal.

The following are all PIDs (stated without proof):

the integers Z, any field F , the ring F [x ].

The ring R = Z[x ] is not a PID: x is irreducible but (x) ( (x , 2) ( R.

Key idea
Divisibility and factorization are well-behaved in PIDs.
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Prime ideals, prime elements, and irreducibles

Euclid’s lemma (300 B.C.)
If a prime p divides ab, then it must divide a or b.

In the language of ideals:

If (a non-unit) p is prime, then (ab) ⊆ (p) implies either (a) ⊆ (p) or (b) ⊆ (p).

Definition
An element p ∈ R is prime if it is not a unit, and one of the equivalent conditions holds:

p | ab implies p | a or p | b

(ab) ⊆ (p) implies (a) ⊆ (p) or (b) ⊆ (p).

Compare this to what it means for p to be irreducible: a | p ⇒ a ∼ p (a 6∈ U(R)).

These concepts coincide in PIDs (like Z), but not in all integral domains.
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Irreducibles and primes

Recall that a nonzero p 6∈ U(R) is:

irreducible if p = ab︸ ︷︷ ︸
(ab)=(p)

⇒ b ∈ U(R)︸ ︷︷ ︸
(a)=(p)

or a ∈ U(R)︸ ︷︷ ︸
(b)=(p)

.

prime if p | ab︸ ︷︷ ︸
(ab)⊆(p)

⇒ p | a︸︷︷︸
(a)⊆(p)

or p | b︸︷︷︸
(b)⊆(p)

.

Proposition
In an integral domain R, if p 6= 0 is prime, then p is irreducible.

Proof (elementwise)

Suppose p is prime, but (for sake of contradiction) reducible. Then p = ab; a, b 6∈ U(R).

Then (wlog) p | a, so a = pc for some c ∈ R. Now,

p = ab = (pc)b = p(cb) .

This means that cb = 1, and thus b ∈ U(R). Therefore, p is prime. �
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Irreducibles and primes
Recall that a nonzero p 6∈ U(R) is:

irreducible if p = ab︸ ︷︷ ︸
(ab)=(p)

⇒ b ∈ U(R)︸ ︷︷ ︸
(a)=(p)

or a ∈ U(R)︸ ︷︷ ︸
(b)=(p)

.

prime if p | ab︸ ︷︷ ︸
(ab)⊆(p)

⇒ p | a︸︷︷︸
(a)⊆(p)

or p | b︸︷︷︸
(b)⊆(p)

.

Proposition
In an integral domain R, if p 6= 0 is prime, then p is irreducible.

Proof (idealwise; contrapositive)

If p is reducible, (p) = (ab)︸ ︷︷ ︸
p=ab

for (p) ( (a) and (p) ( (b).

Then, we have (ab) ⊆ (p)︸ ︷︷ ︸
p|ab

but (a) * (p)︸ ︷︷ ︸
p-a

and (b) * (p)︸ ︷︷ ︸
p-b

.

Therefore, p is not prime.

(a)
(b)

(m)

(ab)=(p)

⇒
(a) * (p) and

(b) * (p)
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Prime ideals in a PID

Proposition
In a PID, every irreducible is prime.

Proof

m is irreducible ⇐⇒ (m) is a max’l principal ideal always
⇐⇒ (m) is maximal in a PID
=⇒ (m) is prime always
⇐⇒ m is prime always

Corollary
In a PID, every nonzero prime ideal is maximal.

Proof
In any intergral domain, (nonzero) prime ⇒ irreducible. �

For m 6= 0 in a general integral domain:

(m) is maximal =⇒ (m) is prime ⇐⇒ m is prime

=⇒ m is irreducible ⇐⇒ (m) is max’l principal
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Non-prime irreducibles, and non-unique factorization

Caveat: Irreducible 6⇒ prime

In the ring Z[
√
−5] :=

{
a + b

√
−5 | a, b ∈ Z

}
,

2 | (1 +
√
−5)(1−

√
−5) = 6 = 2 · 3, but 2 - (1±

√
−5).

Thus, 2 (and 3) are irreducible but not prime.

When irreducibles fail to be prime, we can lose nice properties like unique factorization.

Things can get really bad: not even the factorization lengths need be the same!

For example:

30 = 2 · 3 · 5 = −
√
−30 ·

√
−30 ∈ Z[

√
−30],

81 = 3 · 3 · 3 · 3 = (5 + 2
√
−14)(5− 2

√
−14) ∈ Z[

√
−14].

For another example, in the ring R = Z[x2, x3] =
{
a0 + a2x2 + a3x3 + · · ·+ anxn | ai ∈ Z

}
,

x6 = x2 · x2 · x2 = x3 · x3.

The element x2 ∈ R is not prime because x2 | x3 · x3 yet x2 - x3 in R.
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Greatest common divisors & least common multiples

Proposition
If I ⊆ Z is an ideal, and a ∈ I is its smallest positive element, then I = (a).

Proof
Pick any positive b ∈ I . Write b = aq + r , for q, r ∈ Z and 0 ≤ r < a.

Then r = b − aq ∈ I , so r = 0. Therefore, b = qa ∈ (a). �

Definition
Given a, b ∈ R in an integral domain,

d ∈ R is a common divisor if d | a and d | b.
d is a greatest common divisor (GCD) if c | d for every common divisor c.

m ∈ R is a common multiple if a | m and b | m.

m ∈ R is a least common multiple (LCM) if m | n for every common multiple n.
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Greatest common divisors & least common multiples

The GCD and LCM have nice interpretations in the divisor and ideal lattices.

96

48

16
12

4

2

n

m = lcm(a, b)

a
b

d = gcd(a, b)

c (n)

(a) ∩ (b) = (m) =
(
lcm(a, b)

)
(a)

(b)

(a, b) = (d) =
(
gcd(a, b)

)
(c)

This is how we’ll prove their existence and uniqueness in a PID.

Note that ab is a common multiple of a and b, so (ab) ⊆ (a) ∩ (b).
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Nice properties of PIDs

Proposition
If R is a PID, then any a, b ∈ R∗ have a GCD, d = gcd(a, b).

It is unique up to associates, and can be written as d = xa + yb for some x , y ∈ R.

Proof
Existence. The ideal generated by a and b is

I = (a, b) =
{
ua + vb | u, v ∈ R

}
.

Since R is a PID, we can write I = (d) for some d ∈ I , and so d = xa + yb.

Since a, b ∈ (d), both d | a and d | b hold.

If c is a divisor of a & b, then c | xa + yb = d , so d is a GCD for a and b. X

Uniqueness. If d ′ is another GCD, then d | d ′ and d ′ | d , so d ∼ d ′. X �

The second statement above is called Bézout’s identity.
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Noetherian rings (weaker than being a PID)

A ring is Noetherian if it satisfies any of the three equivalent conditions.

Proposition
Let R be a ring. The following are equivalent:

(i) Every ideal of R is finitely generated.

(ii) Every ascending chain of ideals stabilizes. (“ascending chain condition”)

(iii) Every nonempty family of ideals has a maximal element. (“maximal condition”)

Proof (sketch)

(1⇒ 2): Let I1 ⊆ I2 ⊆ · · · be an ascending chain with I =
∞
∪
j=1

Ij = (a1, . . . , an).

(2⇒ 3): Let S be a nonempty family of ideals.

Take I1 ∈ S. If it isn’t maximal, take some I2 ⊇ I1 in S. Repeat; this process must stop.

(3⇒ 1): Given I , let S =
{
f.g. J E I

}
, with max’l element M ⊆ I . Suppose a ∈ I −M.

Then M ( (M, a) ⊆ I ⇒ (M, a) = I . �

We can define left-Noetherian and right-Noetherian rings analogously.
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Unique factorization domains

Definition
An integral domain is a unique factorization domain (UFD) if:

(i) It is atomic: every nonzero nonunit is a product of irreducibles;

(ii) Every irreducible is prime.

Examples
1. Z is a UFD: Every n ∈ Z can be uniquely factored as a product of irreducibles (primes):

n = pd11 pd22 · · · p
dk
k .

This is the fundamental theorem of arithmetic.

2. The ring Z[x ] is a UFD, because every polynomial can be factored into irreducibles. It
is not a PID because the following ideal is not principal:

(2, x) =
{
f (x) | the constant term is even

}
.

3. The ring Q[x , x1/2, x1/4, . . . ] has no irreducibles.

4. The ring Z[
√
−5] is not a UFD because 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).

5. We’ve shown that (ii) holds for PIDs. Next, we will see that (i) holds as well.
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Unique factorization domains

Theorem
If R is a PID, then R is a UFD.

Proof
We need to show Condition (i) holds: every element is a product of irreducibles.

We’ll show that if this fails, we can construct

I1 ( I2 ( I3 ( · · · ,

which is impossible in a PID. (They are Noetherian.)

Define

X =
{
a ∈ R∗ \ U(R) | a can’t be written as a product of irreducibles

}
.

If X 6= ∅, then pick a1 ∈ X . Factor this as a1 = a2b, where a2 ∈ X and b 6∈ U(R). Then
(a1) ( (a2) ( R, and repeat this process. We get an ascending chain

(a1) ( (a2) ( (a3) ( · · ·

that does not stabilize. Since this is impossible in a PID, X = ∅. �
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Maximal ideals of Z[x ]

Let M E Z[x ] be a maximal ideal.

The intersection M ∩ Z = (n), and by the diamond theorem, Z[x ]/M︸ ︷︷ ︸
field

∼= Z/(n)︸ ︷︷ ︸
field

, so n = p.

Reducing mod p gives a PID, Z[x ]/(p) ∼= Zp[x ], and so M/(p) = (m̄(x)) is principal.

field
UFD

n=p

Z[x ]

M
Z

(n)

Z[x ]/(p)

M/(p)

Z/(p)

(p)/(p)

field PIDZp [x ]

(m̄(x))

Zp

(0̄)

The original ideal in Z[x ] must have the form

M =
(
m(x), p ·f1(x), . . . , p ·fm(x)

)
=
(
p, m(x)

)
,

where m(x) modulo p is irreducible in Zp[x ].
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Maximal ideals of Z[x ]

Proposition
There is a biijection between:

maximal ideals of Zp[x ], and

polynomials m(x) ∈ Z[x ] that remain irreducible modulo p.

Z[x ]

(p,m1(x))
(p,m2(x))

(p,m3(x))

. . .
...

(p)

(0)

Zp[x ]

(m̄1(x))
(m̄2(x))

(m̄3(x))

. . .
...

(0̄)

M. Macauley (Clemson) Chapter 9: Domains Math 8510, Visual Algebra 20 / 88

mailto:macaule@clemson.edu


Summary of ring types

fields

Q

AR
R(
√
−π) Q(

√
m)

F2[x ]/(x2+x+1)

F256

CZp

Q( 3√2, ζ)

PIDs
F [x ] Z

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5

commutative rings

2Z

Z× Z Z6

all rings
RG Mn(R)

H
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The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the
Elements, in which he described what is now known as the
Euclidean algorithm:

Proposition VII.2 (Euclid’s Elements)
Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

If a | b, then gcd(a, b) = a;

If a = bq + r , then gcd(a, b) = gcd(b, r).

This is best seen by an example: Let a = 654 and b = 360.

654 = 360 · 1 + 294 gcd(654, 360) = gcd(360, 294)
360 = 294 · 1 + 66 gcd(360, 294) = gcd(294, 66)
294 = 66 · 4 + 30 gcd(294, 66) = gcd(66, 30)
66 = 30 · 2 + 6 gcd(66, 30) = gcd(30, 6)
30 = 6 · 5 gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.
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The Euclidean algorithm in terms of ideals
Let’s see that example again: Let a = 654 and b = 360.

654 = 360 · 1 + 294 gcd(654, 360) = gcd(360, 294)
360 = 294 · 1 + 66 gcd(360, 294) = gcd(294, 66)
294 = 66 · 4 + 30 gcd(294, 66) = gcd(66, 30)
66 = 30 · 2 + 6 gcd(66, 30) = gcd(30, 6)
30 = 6 · 5 gcd(30, 6) = 6.

We conclude that gcd(654, 360) = 6.

(
gcd(a, b)

)
= (d) =

(
gcd(b, r)

)
(r)

(b)

(a)

(
gcd(654, 360)

)
= (6)

(30)

(66)

(294)

(360)

(654)
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Euclidean domains

Loosely speaking, a Euclidean domain is a ring for which the Euclidean algorithm works.

Definition
An integral domain R is Euclidean if it has a degree function d : R∗ ! Z satisfying:

(i) non-negativity: d(r) ≥ 0 ∀r ∈ R∗.

(ii) monotonicity: if a | b, then d(a) ≤ d(b),

(iii) division-with-remainder property: For all a, b ∈ R, b 6= 0, there are q, r ∈ R such that

a = bq + r with r = 0 or d(r) < d(b) .

Note that Property (ii) could be restated to say: d(a) ≤ d(ab) for all a, b ∈ R∗.

Since 1 divides every x ∈ R,

d(1) ≤ d(x), for all x ∈ R.

Similarly, if x divides 1, then d(x) ≤ d(1). Elements that divide 1 are the units of R.

Proposition
If u is a unit, then d(u) = d(1). �
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The division algorithm in R = Z

The integers are a Euclidean domain with degree function

d : Z∗ −! Z, d(n) = |n|.

The division algorithm takes a, b ∈ R, b 6= 0, and finds q, r ∈ R such that

a = bq + r with r = 0 or d(r) < d(b) .

Note that q and r are not unique!

There are two possibilities for q and r when dividing b = 5 into a = 23:

23 = 4 · 5 + 3, 23 = 5 · 5 + (−2).

• •• •
0 b=5 10 15 20 a=23 25 30

( )

• •• •
0 b=5 10 15 20 a=23 25 30

( )
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Euclidean domains

Examples
R = Z is Euclidean, with d(r) = |r |.
R = F [x ] is Euclidean if F is a field. Define d(f (x)) = deg f (x).

The Gaussian integers
Z[
√
−1] =

{
a + bi | a, b ∈ Z

}
is Euclidean with degree function d(a + bi) = a2 + b2.

Proposition

If R is Euclidean, then U(R) =
{
x ∈ R∗ | d(x) = d(1)

}
.

Proof
We’ve already established “⊆”. For “⊇”, Suppose x ∈ R∗ and d(x) = d(1).

Write 1 = qx + r for some q ∈ R, and r = 0 or d(r) < d(x) = d(1).

But d(r) < d(1) is impossible, and so r = 0, which means qx = 1 and hence x ∈ U(R). �
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The division algorithm in the Gaussian integers

=

<

b = 1 + 2i

ib

−b −ib

b − ib

2b − ib

2b − 2ib

3b − 2ib

a

6 + 3i = a = (2− i)b+ 2 = (2− 2i)b+ i = (3− 2i)b+ (−1− i)
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Failure of the division algorithm in R−5 =
{
a + b

√
−5 | a, b ∈ Z

}

b=2+
√
−5

√
−5b

a = 5
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The Euclidean algorithm in terms of principal ideals and lattices

gcd(6+3i , 1+2i)=1 in Z[i ]: (1) is the min’l princ. ideal containing (6+3i) & (1+2i).

gcd(5, 2+
√
−5)=1 in Z[

√
−5]: (1) is the min’l princ. ideal containing (5) & (2+

√
−5).

N(x) = 1

4

5

45

(1) = Z[i ]

(2)

(1 + 2i)

(6 + 3i)

6 + 3i︸ ︷︷ ︸
=a

= (1 + 2i︸ ︷︷ ︸
=b

)(2− i) +2︸︷︷︸
=r

(1) = Z[
√
−5]

(5, 2+
√
−5)

(2+
√
−5)

(5)

(2)

(
√
−5)

(1−
√
−5) (1+

√
−5)

N(x) = 1

−

4

5
6

9

25

5 6= (2 +
√
−5)q + r , N(r) < N(b) = 9

Note that there are only four principal ideals of Z[
√
−5] of norm less than N(2+

√
−5) = 9!
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Euclidean domains and PIDs

Proposition
Every Euclidean domain is a PID.

Proof
Let I 6= 0 be an ideal of R and pick some b ∈ I with d(b) minimal.

Pick a ∈ I , and write

a = bq + r , where r = 0 or 0 < d(r) < d(b)︸ ︷︷ ︸
impossible by minimality

.

Therefore, r = 0, which means a = bq ∈ (b).

Since a was arbitrary, I = (b). �

Therefore, non-PIDs like the following cannot be Euclidean:

(i) Z[
√
−5], (ii) Z[x ], (iii) F [x , y ].
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Quadradic fields

The quadratic field for a square-free m ∈ Z is

Q(
√
m) =

{
a + b

√
m | a, b ∈ Q

}
.

Proposition (exercise)

In Q[x ], since x2−m is irreducible, it generates a maximal ideal, and there’s an isomorphism

Q[x ]/(x2−m) −! Q(
√
m), f (x) + I 7−! f (

√
m).

Definition
The field norm of Q(

√
m) is

N : Q(
√
m) −! Q, N(a + b

√
m) = (a + b

√
m)(a − b

√
m) = a2 −mb2

Remarks (exercises)

The field norm is multiplicative: N(xy) = N(x)N(y).

If m < 0 and z = a + b
√
m ∈ C, then N(a + b

√
m) = zz̄ = |z |2.

If m > 0, then N(x) isn’t a classic “norm” – it can take negative values.
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Norms of elements in Z[
√
−5] =

{
a + b

√
−5 | a, b ∈ Z

}
⊆ Q(

√
−5)

=

<

246

201

166

141

126

121

126

141

166

201

246

225

180

145

120

105

100

105

120

145

180

225

206

161

126

101

86

81

86

101

126

161

206

189

144

109

84

69

64

69

84

109

144

189

174

129

94

69

54

49

54

69

94

129

174

161

116

81

56

41

36

41

56

81

116

161

150

105

70

45

30

25

30

45

70

105

150

141

96

61

36

21

16

21

36

61

96

141

134

89

54

29

14

9

14

29

54

89

134

129

84

49

24

9

4

9

24

49

84

129

126

81

46

21

6

1

6

21

46

81

126

125

80

45

20

5

0

5

20

45

80

125

126

81

46

21

6

1

6

21

46

81

126

129

84

49

24

9

4

9

24

49

84

129

134

89

54

29

14

9

14

29

54

89

134

141

96

61

36

21

16

21

36

61

96

141

150

105

70

45

30

25

30

45

70

105

150

161

116

81

56

41

36

41

56

81

116

161

174

129

94

69

54

49

54

69

94

129

174

189

144

109

84

69

64

69

84

109

144

189

206

161

126

101

86

81

86

101

126

161

206

225

180

145

120

105

100

105

120

145

180

225

246

201

166

141

126

121

126

141

166

201

246

4 9 49 121

5 6 9 14 21 41 69 86

21 29 69 101 141

46 49 61 94 109 166

89 129 161 201161

129 134 141 161 206

4949121

5691421416986

212969101141

46496194109166

89129161201 161

129134141161206

5 6 9 14 21 41 69 86

21 29 69 101 141

46 49 61 94 109 166

89 129 161 201161

129 134 141 161 206

691421416986

212969101141

46496194109166

89129161201 161

129134141161206
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Quadradic integers
Every number in Z[

√
m] is a root of a monic degree-2 polynomial:

a + b
√
m is a root of f (x) = x2 − 2ax + (a2−b2m) ∈ Z[x ].

If m ≡ 1 mod 4, then

Z
[ 1+

√
m

2

]
=
{
a + b 1+

√
m

2 | a, b ∈ Z
}

=
{

c
2 + d

√
m

2 | c ≡ d (mod 2)
}

also contains roots of monic polynomials:

a+b
√
m

2 is a root of f (x) = x2 − ax + a2−b2m
4 ∈ Z[x ].

Definition
For a square-free m ∈ Z, the ring Rm of quadratic integers is the subring of Q(

√
m)

consisting of roots of monic quadratic polynomials in Z[x ]:

Rm =


Z[
√
m] m ≡ 2 or 3 (mod 4)

Z
[ 1+

√
m

2

]
m ≡ 1 (mod 4)

These are subrings of the algebraic integers, the roots of polynomials, and the algebraic
numbers, the roots of all polynomials in Z[x ].
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Examples: R−2 = Z[
√
−2] and R−7 = Z

[1+
√
−7

2

]
⊆ C

“rectangular” “triangular”
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Primes in the Gaussian integers: R−1 =
{
a + b

√
−1 | a, b ∈ Z

}
=

<
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Primes in the Eisenstein integers: R−3 =
{
a+ωb | a, b ∈ Z

}
, ω = 1+

√
−3

2
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Primes in R−5 =
{
a + b

√
−5 | a, b ∈ Z

}
Units are white, primes are black, non-prime irreducibles are blue, red and purple.
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Units, primes, and irreducibles in algebraic integer rings

The field norm of z ∈ Rm is an integer, even in Z
[ 1+

√
m

2

]
:

N
(
a + b 1+

√
m

2

)
= a2 + ab + 1−m

4 b2 ∈ Z, if m ≡ 1 mod 4.

This, with N(xy) = N(x)N(y), means that u ∈ U(Rm) iff N(u) = ±1.

Units in Rm

R−1 has 4 units: ±1 and ±i (solutions to N(a + bi) = a2 + b2 = 1).

R−3 has 6 units: ±1, and ± 1±
√
−3

2 (solutions to N(a + b
√
−3) = a2 + 3b2 = 1).

U(Rm) = {±1} for all other m < 0.

If m ≥ 0, then Rm has infinitely many units – solutions to Pell’s equation:

N(a + b
√
m) = a2 − b2m = ±1.

The norm is useful for determining the primes and irreducibles in Rm.

Non-prime irreducibles lead to multiple elements with the same norm. In R−5:

3 · 3 = 9 = (2 +
√
−5)(2−

√
−5) ⇒ N(3) = N(2 +

√
−5) = 9.

If N(x) is prime, then x is prime in Rm, but not conversely.
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Primes in Rm

Consider a prime p ∈ Z but in the larger ring Rm. There are three possible behaviors:

p splits if (p) = pq for distinct prime ideals.

p is inert if (p) remains prime in Rm.

p is ramified if (p) = p2, for a prime ideal p.

Here’s what this looks like in the subring lattice, for the Gaussian integers.

Z[i ]

Z

(3)

“3 is inert”

Z[i ]

(1−2i) Z (1+2i)

(5)

“5 splits; is reducible”

Z[i ]

(1+i) Z

(2)

“2 is ramified; irreducible”

Notice that if a prime splits in Z[i ], then it is reducible, and must factor.
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Primes in Rm that aren’t PIDs
Consider a prime p ∈ Z but in the larger ring Rm. There are three possible behaviors:

p splits if (p) = pq for distinct prime ideals.

p is inert if (p) remains prime in Rm.

p is ramified if (p) = p2, for a prime ideal p.

Here’s what this looks like in the subring lattice of R−5 = Z[
√
−5].

Z[
√
−5]

Z

(11)

“11 is inert”
prime

Z[
√
−5]

(3−2
√
−5)Z(3+2

√
−5)

(29)

“29 splits”
reducible

Z[
√
−5]

(3, 2−
√
−5)Z(3, 2+

√
−5)

(3)

...x ..
.

x

“3 splits”
irreducible

Z[
√
−5]

(
√
−5) Z

(5)

“5 is ramified”
reducible

Z[
√
−5]

(2, 1+
√
−5) Z

(2)

“2 is ramified”
irreducible

Remark
In a non-PID, a split prime p may or may not factor, but its ideal (p) will.
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Primes in Rm

If p is split or ramified, then (p) isn’t a prime ideal because it factors.

The following characterizes when and how it factors.

Proposition (HW)
Consider the ring Rm of quadratic integers and a odd prime p ∈ Z.

If p - m and m is a quadratic residue mod p (i.e., m ≡ n2 (mod p)), then p splits:

(p) =
(
p, n +

√
m
)(
p, n −

√
m
)
,

If p - m and m is not a quadratic residue mod p, then p is inert.

If p | m, then p is ramified, and

(p) =
(
p,
√
m
)2
.

Remark

This extends to all primes by replacing p | m with p | ∆, the discriminant of Q(
√
−m):

∆ =

{
m m ≡ 1 (mod 4)

4m m ≡ 2, 3 (mod 4)
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Primes in Rm

The behavior of a prime p ∈ Z in Rm is completely characterized by quadratic residues.

The discriminant ∆ of Rm is ∆ = m (triangular) or ∆ = 4m (rectangular).

A prime p 6= 2 in Z, when passed to Rm, becomes:

ramified iff ∆ ≡ 0 (mod p).

split iff ∆ ≡ a2 (mod p), for some a 6≡ 0,

inert iff ∆ 6≡ a2 (mod p), for all a.

The prime p = 2 in Z, when passed to Rm, becomes:

ramified iff ∆ ≡ 0, 4 (mod 8).

split iff ∆ ≡ 1 (mod 8).

inert iff ∆ 6≡ 5 (mod 8).

Remark
If Rm is a PID and p splits, then it is reducible.
If Rm is not a PID and p splits, then

p might be reducible, or
p could be a non-prime irreducible.
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Primes in R−5 =
{
a + b

√
−5 | a, b ∈ Z

}
Units are white, primes are black, non-prime irreducibles are blue, red and purple.
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The ideal class group

The degree to which unique factorization fails in R is measured by the class group, Cl(R).

Z[
√
−5]

(3, 1−
√
−5) (3, 1+

√
−5) (7, 4+

√
−5) (7, 4−

√
−5)

(3) (1+2
√
−5) (4+2

√
−5) (4−2

√
−5) (1−2

√
−5) (7)

(21)

Z[
√
−5]

p p q q

pp pq pq pq pq qq

ppqq

Formally, two ideals I and J are equivalent if αI = βJ for some α, β ∈ R.

The equivalence classes form a group, under [I ] · [J] := [IJ].

The identity element is the class of principal ideals, [(1)].

In the example above, Cl(R−5) =
{[

(1)
]
,
[
p
]} ∼= C2.

Key point
The class group is trivial iff Rm is a PID (equivalently, UFD).
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The ideal class group

The degree to which unique factorization fails in R is measured by the class group, Cl(R).

Z[
√
−5]

(2, 1+
√
−5)

(2)

(4)

Z[
√
−5]

(3, 2−
√
−5)(3, 2+

√
−5)

(2−
√
−5)(2+

√
−5) (3)

(9)

Z[
√
−5]

(3, 1−
√
−5)(3, 1+

√
−5)(2, 1+

√
−5)

(1−
√
−5)(2) (3)(1+

√
−5)

(6)

The class group is Cl(Z[
√
−5) ∼= C2. [

(1)
]

[
p
]

[
(1)
] [

p
]

[
(1)
]

[
p
]
[
p
]

[
p
]

[
(1)
][

p
]

M. Macauley (Clemson) Chapter 9: Domains Math 8510, Visual Algebra 45 / 88

mailto:macaule@clemson.edu


The ideal class group

Unique factorization fails in R−23 = Z
[
ω
]
, for ω = 1+

√
−23
2 , in a different way:

(2− ω)(1 + ω) =
(
3−
√
−23
2

)(
3+
√
−23
2

)
=
( 3
2

)2− (√−232

)2
= 9

4 + 23
4 = 8 = 23.

Z
[ 1+

√
−23
2

]

(2, ω) (2, ω)

(4, 2−ω) (2) (4, 1+ω)

(2−ω) (4) (1 + ω)

(8)

Z
[ 1+

√
−23
2

]

p p

p2 pp p2

p3 p2p2 p3

p3p3

[
(1)
]

[
p
]

[
p2
]

[
(1)
] [

p
] [

p2
]

[
(1)
]

[
p
]

[
p2
]

[
p
]

[
p2
]

[
(1)
]

[
p2
]

[
(1)
]

[
p
]

[
(1)
]

[
p
]

[
p2
]

The class group is Cl
(
Z
[ 1+

√
−23
2

]) ∼= C3.
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The ideal class group

Unique factorization fails in R−14 = Z[
√
−14] because 34 = 81 = (5 +

√
−14)(5 +

√
−14).

Z[
√
−14]

(3, 1+
√
−14) (3, 1−

√
−14)

(9, 2−
√
−14) (3) (9, 2+

√
−14)

(27, 5+2
√
−14) (9) (27, 5−2

√
−14)

(5+2
√
−14) (27) (5−2

√
−14)

(81)

Z[
√
−14]

p p

p2 pp p2

p3 p2p2 p3

p4 p3p3 p4

p4p4

[
(1)
]

[
p
]

[
p2
]

[
p3
]

[
(1)
] [

p
] [

p2
] [

p3
]

[
(1)
]

[
p
]

[
p2
]

[
p3
]

[
p
]

[
p2
]

[
p3
]

[
(1)
]

[
p2
]

[
p3
]

[
(1)
]

[
p
]

[
p3
]

[
(1)
]

[
p
]

[
p2
]

[
(1)
]

[
p
]

[
p2
]

[
p3
]

The class group is Cl(Z[
√
−14]) ∼= C4.
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The ideal class group

Unique factorization fails in R−30 = Z[
√
−30] because 2 · 3 · 5 = 30 = −(

√
−30)2.

Z[
√
−30]

(2,
√
−30) (3,

√
−30) (5,

√
−30)

(6,
√
−30) (10,

√
−30) (15,

√
−30)

(
√
−30)

(2) (3) (5)

(6) (10) (15)

(30)

Z[
√
−30]

p q r

pq pr qr

pqr

p2 q2 r2

p2q2 p2r2 q2r2

p2q2r2

[
(1)
]

[
p
]

[
q
]

[
r
]

[
(1)
] [

p
] [

q
] [

r
]

[
(1)
]

[
p
]

[
q
]

[
r
]

[
p
]

[
(1)
]

[
r
]

[
r
]

[
q
]

[
r
]

[
(1)
]

[
p
]

[
r
]

[
q
]

[
p
]

[
(1)
]

[
(1)
] [

p
]

[
q
] [

r
]

The class group is Cl(Z[
√
−30]) ∼= V4.
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The ideal class group

Theorem
For squarefree m < 0, the class group Cl(Rm) is trivial if and only if

m ∈
{
− 1,−2,−3,−7,−11,−19,−43,−67,−163

}
.

Conjecture (Cohen/Lenstra, 1984)

There are infinitely many m > 0 for which Cl(Rm) is trivial.

Here is the list of squarefree m > 0 for which the class group of Rm is trivial:

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83,
86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131, 133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163,
166, 167, 173, 177, 179, 181, 191, 193, 197, 199, 201, 206, 209, 211, 213, 214, 217, 227, 233, 237, 239, 241, 249,
251, 253, 262, 263, 269, 271, 277, 278, 281, 283, 293, 301, 302, 307, 309, 311, 313, 317, 329, 331, 334, 337, 341,
347, 349, 353, 358, 367, 373, 379, 381, 382, 383, 389, 393, 397, 398, 409, 413, 417, 419, 421, 422, 431, 433, 437,
446, 449, 453, 454, 457, 461, 463, 467, 478, 479, 487, 489, 491, 497, 501, 502, 503, 509, 517, 521, 523, 526, 537,
541, 542, 547, 553, 557, 563, 566, 569, 571, 573, 581, 587, 589, 593, 597, 599, 601, 607, 613, 614, 617, 619, 622,
631, 633, 641, 643, 647, 649, 653, 661, 662, 669, 673, 677, 681, 683, 691, 694, 701, 709, 713, 717, 718, 719, 721,
734, 737, 739, 743, 749, 751, 753, 757, 758, 766, 769, 773, 781, 787, 789, 797, 809, 811, 813, 821, 823, 827, 829,
838, 849, 853, 857, 859, 862, 863, 869, 877, 878, 881, 883, 886, 887, 889, 893, 907, 911, 913, 917, 919, 921, 926,
929, 933, 937, 941, 947, 953, 958, 967, 971, 973, 974, 977, 983, 989, 991, 997, 998.
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Quadratic integers and norm-Euclidean domains

Proposition
If m = −2,−1, 2, 3, then Rm is Euclidean with d(x) = |N(x)|; (“norm-Euclidean”).

Proof
Take a, b ∈ Rm = Z[

√
m], with b 6= 0. Let a/b = s + t

√
m ∈ Q(

√
m).

Pick q = c + d
√
m ∈ Rm, the nearest element to a/b.

Since N(b) = N(r)N(b/r), we have

|N(r)| < |N(b)| ⇔ |N(r/b)| < |N(1)|

For each m = −2,−1, 2, 3:

−1 < N( r
b ) = (c − s)2︸ ︷︷ ︸

≤ 1
4

−m (d − t)2︸ ︷︷ ︸
≤ 1

4

< 1.

a
b = s + t

√
m ∈ Q(

√
m)

q = c+d
√
m ∈ Z(

√
m)

r
b ∈ Q(

√
m)

a = bq + r
m

q = a
b −

r
b

≤ 1
2
√
m

≤ 1
2

Proposition (HW)

If m = −3,−7,−11, then Rm = Z
[ 1+

√
m

2

]
is norm-Euclidean.
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Quadratic integers and norm-Euclidean domains

Alternate characterization
For m < 0, the ring Rm is norm-Euclidean iff the unit balls centered at points in Rm cover
the complex plane.

R−5 = Z[
√
−5] R−15 = Z

[ 1+
√
−15
2

]

If a/b ∈ Q(
√
m) (see previous proof) lies in the yellow region, then N(r/b) > 1.
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Quadratic integers and norm-Euclidean domains

Alternate characterization
For m < 0, the ring Rm is norm-Euclidean iff the unit balls centered at points in Rm cover
the complex plane.

R−2 = Z[
√
−2]

Euclidean, PID

R−5 = Z[
√
−5]

non-Euclidean, non-PID
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Quadratic integers and norm-Euclidean domains

Alternate characterization
For m < 0, the ring Rm is norm-Euclidean iff the unit balls centered at points in Rm cover
the complex plane.

R−11 = Z
[ 1+

√
−11
2

]

Euclidean, PID

R−19 = Z
[ 1+

√
−19
2

]

non-Euclidean, PID
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PIDs that are not Euclidean
Theorem
The ring Rm is norm-Euclidean iff

m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73} .

Theorem (D.A. Clark, 1994)
The rings R69 and R14 are Euclidean domains that are not norm-Euclidean.

The following degree function works for R69, defined on the primes

d(p) =

{
|N(p)| if p 6= 10 + 3α
c if p = 10 + 3α

α =
1 +
√
69

2
, c > 25 an integer.

Theorem
If m < 0, then Rm is Euclidean iff m ∈ {−11,−7,−3,−2,−1}.

Theorem

If m < 0, then Rm is a PID iff m ∈
{
−163,−67,−43,−19︸ ︷︷ ︸

non-Euclidean

,−11,−7,−3,−2,−1︸ ︷︷ ︸
Euclidean

}
.
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Quotients of the Gaussian integers

Since Z[i ] is PID, every quotient ring has the form Z[i ]/(z0), for some z0 ∈ Z[i ].

This ring is finite, and there are several canonical ways to describe the residue classes.

Here are two ways to visualize Z[i ]/(3).

3 3

Since 3 is prime in Z[i ], the ideal (3) is maximal, so Z[i ]/(3) ∼= F9.
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Quotients of the Gaussian integers

Since 3 + i = (1 + 2i)(1− i), the quotient Z[i ]/(3 + i) is not a field; it has order 10.

The element 3 + 2i is irreducible (N(3 + 2i) = 13 is prime), so Z[i ]/(3 + 2i) is a field.

3+i

Z[i ]/(3 + i) ∼= Z10

3+2i

Z[i ]/(3 + 2i) ∼= Z13
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Algebraic integers (roots of monic polynomials)

Figure: Algebraic numbers in C. Colors indicate the coefficient of the leading term: red = 1 (algebraic
integer), green = 2, blue = 3, yellow = 4. Large dots mean fewer terms and smaller coefficients. Image
from Wikipedia (made by Stephen J. Brooks).
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Algebraic integers (roots of monic polynomials)

Figure: Algebraic integers in C. Each red dot is the root of a monic polynomial of degree ≤ 7 with
coefficients from {0,±1,±2,±3,±4,±5}. From Wikipedia.
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Summary of ring types

fields

QA
R(
√
−π, i) R

Fpn

CZp

Q(
√
m)

Euclidean domains

Z F [x ]

R−1 R69

PIDsR−43

R−19

R−67

R−163

UFDs
F [x , y ] Z[x ]

integral domains
Z[x2, x3] R−5 2Z

Z× Z Z6
commutative rings

all rings
RG Mn(R)

H
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A problem from Master Sun’s mathematical manual (3rd century A.D.)

Problem 26, Volume 3 from the Sunzi Suanjing:
“There are certain things whose number is unknown.
A number is repeatedly divided by 3, the remainder
is 2; divided by 5, the remainder is 3; and by 7, the
remainder is 2. What will the number be?”

This is describing solution(s) to

x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7).

This problem was also studied by Aryabhata (476–550 A.D.),
Brahmagupta (598–668 A.D.), Ibn al-Haytham (965–1040
A.D.), and Fibonacci (1170–1250 A.D.).

During the Song dynasty, Qin Jiushau (1202–1261) published this in
his famous Shùshū Jiǔzhāng: “A Mathematical Treatise in Nine
Sections.”

It appears today in algorithms for RSA cryptography and the FFT.

M. Macauley (Clemson) Chapter 9: Domains Math 8510, Visual Algebra 60 / 88

mailto:macaule@clemson.edu


The Sunzi remainder theorem in Z
A solution to x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) satisfies

x ∈ (2 + 3Z) ∩ (3 + 5Z) ∩ (2 + 7Z).

Every solution has the form 23 + 105k, i.e., elements of the coset 23 + 105Z.

Formally, there is a ring isomorphism

Z/105Z −! Z/3Z× Z/5Z× Z/7Z, x mod 105 7−!
(
x mod 3, x mod 5, x mod 7

)
.

Sunzi remainder theorem in Z
Let n1, . . . , nk be pairwise co-prime integers. For any a1, . . . , ak ∈ Z, the system

x ≡ a1 (mod n1)
...

x ≡ ak (mod nk ).

has a solution. Moreoever, any two solutions are equivalent modulo n := n1n2 · · · nk .
Equivalentally, there is an isomorphism

Z/nZ −! Z/n1Z× · · · × Z/nkZ, x mod n 7−! (x mod n1, . . . , x mod nk ).
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The Sunzi remainder theorem in a PID

Elements n1, . . . , nk in a PID are pairwise co-prime if any of the three equivalent conditions
hold, for every i 6= j :

(a) gcd(ni , nj ) = 1,

(b) ani + bnj = 1, for some a, b ∈ R,

(c) (ni ) + (nj ) = R.

Sunzi remainder theorem for PIDs
Let n = n1, . . . , nk ∈ R be pairwise co-prime elements in a PID, with n = n1n2 . . . nk . Then
there is an isomorphism

R/(n) −! R/(n1)× · · · × R/(nk ), x mod n 7−! (x mod n1, . . . , x mod nk ).

Corollary
Let R = Z and Ij = (nj ), for j = 1, . . . , k with gcd(ni , nj ) = 1 for i 6= j . Then

I1 ∩ · · · ∩ Ik = (n1n2 · · · nk ), and Zn1n2···nn ∼= Zn1 × · · · × Znk .
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The Sunzi remainder theorem in a commutative ring

In a ring R, say that I , J E R are co-maximal ideals if I + J = R.

Equivalently, neither contain a maximal ideal. We can define co-prime analogously.

If R is commutative, then product of ideals I with J is

IJ :=
{
a1b1 + · · ·+ ambm | am ∈ I , bm ∈ J, m ∈ N

}
.

This is the smallest ideal that contains all elements of the form ab, for a ∈ I and b ∈ J.

It is straightforward to define this for more than two ideals.

Sunzi remainder theorem for commutative rings
Let R be a commutative ring with 1, and I1, . . . , In pairwise co-maximal ideals with
I = I1I2 · · · In. Then there is an isomorphism

R/I −! R/I1 × · · · × R/In, x + I 7−! (x + I1, . . . , x + In).

Do you see how to extend this to general rings?

The key is to find a suitable replacement for I1I2 · · · In.

M. Macauley (Clemson) Chapter 9: Domains Math 8510, Visual Algebra 63 / 88

mailto:macaule@clemson.edu


The Sunzi remainder theorem in a general ring

Lemma
In a commutative ring R with pairwise co-maximal ideals I1, . . . , In,

I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In.

Proof
The “⊆” direction always holds. (Why?) X

“⊇:” Use induction.

Base case (n = 2): suppose I + J = R, and write a + b = 1, for a ∈ I and b ∈ J.

Multiply by r ∈ I ∩ J to get r = ra︸︷︷︸
∈IJ

+ rb︸︷︷︸
∈IJ

.

Thus, r = ra + rb ∈ IJ, hence I ∩ J ⊆ IJ. X

Suppose the result holds for n ideals; we’ll show it holds for n + 1. Let

I := I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In, and J = In+1.

M. Macauley (Clemson) Chapter 9: Domains Math 8510, Visual Algebra 64 / 88

mailto:macaule@clemson.edu


The Sunzi remainder theorem in a general ring

Lemma
In a commutative ring R with pairwise co-maximal ideals I1, . . . , In,

I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In.

Proof (contin.)
We need to show equailty in the following, and it suffices to show that that I + J = R:

I1I2 · · · In︸ ︷︷ ︸
=I

In+1︸︷︷︸
=J

⊆ (I1 ∩ I2 ∩ · · · ∩ In) ∩ (In+1).

For each j = 1, . . . n, since Ij + In+1 = R, write 1 = aj + bj , with aj ∈ Ij and bj ∈ In+1.

1 = a1 + b1 ∈ I1 + In+1
1 = a2 + b2 ∈ I2 + In+1
1 = a3 + b3 ∈ I3 + In+1

...
. . .

...

1 = an + bn+1 ∈ In + In+1

Note that a1a2 · · · an︸ ︷︷ ︸
∈I

= (1− b1)(1− b2) · · · (1− bn) = 1 +
[∑

lots of terms in J︸ ︷︷ ︸
∈J

]
. �
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The most general version

Sunzi remainder theorem, general rings
Let R be a ring with 1, and I1, . . . , In pairwise co-maximal ideals with I = I1 ∩ · · · ∩ In.
Then there is an isomorphism

R/I −! R/I1 × · · · × R/In, x + I 7−! (x + I1, . . . , x + In).

Proof
The following defines a ring homomorphism with Ker(φ) = I (exercise):

φ : R −! R/I1 × · · · × R/In, φ : x 7−! (x + I1, . . . , x + In).

The result follows from the FHT once we show that φ is onto.

An element (r1 + I , . . . , rn + I ) in the co-domain has a preimage iff there is a solution to:
x ≡ r1 (mod I1)
...

x ≡ rn (mod In).
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SRT: Establishing surjectivity

Proposition
Let I1, . . . , In be pairwise co-maximal ideals of R. For any r1, . . . , rn ∈ R, the system

x ≡ r1 (mod I1)
...

x ≡ rn (mod In)

has a solution r ∈ R.

Proof (all we need to show)
Any element of the following form must be a solution:

x = r1s1 + · · ·+ rnsn, where sk ≡

{
1 (mod Ik )

0 (mod Ij ), j 6= k

We’ll replace sk ≡ 0 (mod Ij ), ∀j 6= k with the equivalent sk ≡ 0 (mod
⋂

j 6=k Ij ).

All we have to do is construct s1 . . . , sn!

We’ll show how to construct s1. Then, constructing s2, . . . , sn is analogous.
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SRT: Establishing surjectivity

Proposition (special case of n = 2)
Let I , J be co-maximal ideals of R. For any r1, r2 ∈ R, the system{

x ≡ r1 (mod I )
x ≡ r2 (mod J)

has a solution r ∈ R.

Proof
Write 1 = a + b, with a ∈ I and b ∈ J, and set r = r2a + r1b. This works:

r − r1 = (r − r1b) + (r1b − r1) = r2a + r1(b − 1) = r2a − r1a = (r2 − r1)a ∈ I

implies that r ≡ r1 (mod I ), and

r − r2 = (r − r2a) + (r2a − 1) = r1b + r2(a − 1) = r1b − r2b = (r1 − r2)b ∈ J

means that r ≡ r2 (mod J). X
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SRT: Establishing surjectivity

Proposition (all that’s left to show)
The ideals I1 and I2 ∩ · · · ∩ In are co-maximal, and thus the system{

x ≡ 1 (mod I1)

x ≡ 0 (mod
⋂

j 6=1 Ij )

has a solution s1 ∈ R.

Proof (contin.)
For each j = 2, . . . n, since I1 + Ij = R, write 1 = aj + bj , with aj ∈ I1 and bj ∈ Ij .

1 = a2 + b2 ∈ I1 + I2
1 = a3 + b3 ∈ I1 + I3
1 = a4 + b4 ∈ I1 + I4

...
...

1 = an
. . . + bn ∈ I1 + In

Note that 1 = (a2 + b2)(a3 + b3) · · · (an + bn) =
[∑

terms in I1︸ ︷︷ ︸
∈I1

]
+ b2b3 · · · bn︸ ︷︷ ︸
∈I2∩I3∩···∩In

. �
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An example of the Sunzi remainder theorem

Note that (3) ⊆ Z[i ] is prime (and hence maximal), but (5) = (1 + 2i)(1− 2i).

3

Z[i ]/(3) ∼= F9

5

Z[i ]/(5) ∼= Z[i ]/(1+2i)× Z[i ]/(1−2i) ∼= Z5 × Z5
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A group-theoretic analogue of the Sunzi remainder theorem

We encountered the following after proving the FHT for groups.

Theorem (HW)
Let A,B be normal subgroups satisfying G = AB. Then

G/(A ∩ B) ∼= G/A× G/B.

G/B∼=A
G/A∼=B

B∼=G/A
A∼=G/B

G ∼= A×B

A
B

〈1〉

G/B
G/A

B/A∩B∼=G/A
A/A∩B∼=G/B

G ∼= AB

A
B

A∩B

G/B
G/A

B/A∩B∼=G/A
A/A∩B∼=G/B

G/A∩B ∼= G/A×G/B

A/A∩B
B/A∩B

A∩B/A∩B
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A lattice interpretation of the Sunzi remainder theorem

Let’s compare to the actual Sunzi remainder theorem.

Sunzi remainder theorem (2 factors)
Let I , J be ideal of a ring R satisfying R = I + J. Then

R/(I ∩ J) ∼= R/I × R/J.

R ∼= I1×I2

I1
I2

〈0〉

R/I2∼= I1
R/I1∼= I2

I2∼=R/I1
I1∼=R/I2

R ∼= I1+I2

I1
I2

I

R/I2
R/I1

I2/I ∼=R/I1
I1/I ∼=R/I2

R/I ∼= R/I1×R/I2

I1/I
I2/I

I/I

R/I2
R/I1

I2/I ∼=R/I1
I1/I ∼=R/I2
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Idempotents

Definition

An element e in an integral domain R is an idempotent if e2 = e. An orthogonal pair of
idempotents are e1, e2 ∈ R such that

e1 + e2 = 1 and e1e2 = 0.

Every idempotent e ∈ R forms an orthogonal pair with 1− e.

The Sunzi remainder theorem says that R ∼= Re × R(1− e). Compare this to normal
subgroups that are lattice complements.

R = (1)

(e1)
(e2)

(0)

R ∼= Re1×Re2

Re1
Re2

(0)

G ∼= H×N

H
N

〈1〉

If R ∼= R/I1 × · · · × R/In, then the elements

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1),

are central idempotents, and are pairwise orthogonal.
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Polynomials rings

Let’s continue to assume that R is an integral domain with 1, and F a field.

Proposition (exercise)

Let f (x), g(x) ∈ R[x ] be nonzero. Then

1. deg(f (x)g(x)) = deg f (x) + deg g(x).

2. U(R[x ]) = U(R),

3. R[x ] is an integral domain.

Let f (x) ∈ Z[x ] be irreducible. Let’s explore how f (x) factors over larger rings.

For example, f (x) = x4 − 2 ∈ Z[x ] factors as

(x − 4√2)(x + 4√2)(x2 +
√
2) ∈ R[x ]

(x − 4√2)(x + 4√2)(x − i 4√2)(x + i 4√2) ∈ C[x ].

But it remains irreducible in Q[x ].

Key idea
Remaining inside the field of fractions will never cause an irreducible polynomial to factor.
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Reduction of coefficients mod I
Let I be an ideal of a commutative ring R with 1. The canonical quotient map

R −! R̄ := R/I , r 7−! r̄ := r + I

defines a homomorphism called the reduction of coefficients modulo I :

πI : R[x ] −! R̄[x ], πI :

n∑
i=0

anxn 7−!
n∑

i=0

ānxn,

Proposition
For an integral domain R,

(i) R[x ]/(I ) ∼= (R/I )[x ] (ii) I E R is prime iff (I )E R[x ] is prime.

Proof
Part (i): immediate from the FHT because Ker(φ) = (I ). X

For Part (ii):

I prime ⇔ R/I an integral domain ⇔ (R/I )[x ] an integral domain

⇔ R[x ]/(I ) an integral domain

⇔ (I ) prime.
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Primitive elements and Gauss’ lemma

Definition
If R is a UFD, the content of f (x) ∈ R[x ] is the GCD of its coefficients (up to associates).

If the content is 1, then f (x) is primitive.

Gauss’ lemma
Let R be a UFD. If f (x), g(x) ∈ R[x ] are primitive, then so is f (x)g(x).

Proof (contrapositive)

f (x)g(x) not primitive ⇐⇒ some p | f (x)g(x) ∈ R[x ]

⇐⇒ f̄ (x)ḡ(x) = 0̄ ∈ R/(p)[x ]

=⇒ f̄ (x) = 0̄ or ḡ(x) = 0

⇐⇒ p | f (x) or p | g(x) in R[x ]

⇐⇒ f (x) not prim., or g(x) not prim.
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Primitive elements

Lemma
Suppose R is a UFD with field of fractions F . Suppose f (x) and g(x) are primitive in R[x ],
but associates in F [x ]. Then they are associates in R[x ].

Proof
Since f (x) ∼ g(x) we have f (x) = ag(x) for some a ∈ F . If a = b/c for a, b ∈ R,

f (x) = ag(x) =
b
c
g(x) =⇒ cf (x) = bg(x).

Since f (x) and g(x) are primitive, the content of cf (x) and bg(x) is c ∼ b. Now,

b ∼ c in R =⇒ b = cu for some u ∈ U(R) =⇒ a = b/c = u ∈ U(R).

This means that f (x) ∼ g(x) in R[x ]. �
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Primitive elements

Proposition
Let R be a UFD and F its field of fractions. If f (x) is irreducible in R[x ], then it is
irreducible in F [x ].

Proof
Since f (x) is irreducible in R[x ], it is primitive. For sake of contradiction, suppose

f (x) = f1(x)f2(x) ∈ F [x ] deg(fi (x)) > 0

= a1g1(x) · a2g2(x) ∈ F [x ] ai ∈ F , gi (x) primitive in R[x ].

We can now conclude that:

(i) f (x) ∼ g1(x)g2(x) in F [x ], (because a1a2 ∈ F [x ] is a unit).

(ii) g1(x)g2(x) is primitive in R[x ] (by Gauss’ lemma).

(iii) f (x) ∼ g1(x)g2(x) in R[x ], (by Lemma; f (x) ∼ g1(x)g2(x) in F [x ]).

Therefore, f (x) = ug1(x)g2(x) for some u ∈ U(R), contradicting irreducibility. �
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Polynomials rings over a UFD

Theorem
If R is a UFD, then R[x ] is as well.

Proof
We need to show:

(i) Each nonzero nonunit f (x) ∈ R[x ] is a product of irreducibles. (simple induction)

(ii) Every irreducible is prime.

(ii): Suppose f (x) is irreducible (and thus primitive), and f (x) | g(x)h(x) in R[x ].

Since f (x) remains irreducible in F [x ], a Euclidean domain, it is prime in F [x ].

WLOG, say f (x) | g(x) in F [x ], with g(x) = f (x)k(x) ∈ F [x ] and k(x) ∈ F [x ]. Write

g(x) = a g1(x)︸ ︷︷ ︸
∈R[x ]

= (b/c)f (x) k1(x)︸ ︷︷ ︸
∈R[x ]

, g1(x), k1(x) primitive.

Now,

g1(x) ∼ f (x)k1(x) in F [x ]
Gauss
=⇒ f (x)k1(x) prim. Lemma

=⇒ g1(x) ∼ f (x)k1(x) in R[x ].

Writing g1(x) = uf (x)k1(x) for some u ∈ U(R) shows f (x) | g1(x) | g(x) ∈ R[x ]. �
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An irreducibility test

Eisenstein’s criterion
Consider a polynomial

f (x) = a0 + a1x + · · ·+ anxn ∈ R[x ].

over a PID. If there is a prime p ∈ R such that:

1. p | ai for all i < n 2. p - an, 3. p2 - a0,

then f (x) is irreducible.

Proof
Assume f (x) is primitive and suppose it factors as f (x) = g(x)h(x):

f (x) =
(
b0 + b1x + · · ·+ bkxk

)(
c0 + c1x + · · ·+ c`x `

)
∈ R[x ], k, ` > 0.

Reduce coefficients modulo I = (p) to get

f̄ (x) = ānxn = b̄k c̄`xn = ḡ(x)h̄(x) ∈ R̄[x ].

From this we can reach a contradiction:

x | ḡ(x)h̄(x) ⇒ b̄0 = c̄0 = 0 ⇒ p | b0 and p | c0 ⇒ p2 | b0c0 = a0.
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An irreducibility test

Eisenstein’s criterion (equivalent formulation)
Consider a polynomial

f (x) = a0 + a1x + · · ·+ anxn ∈ R[x ].

over a PID. If there is a prime ideal P E R such that:

1. ai ∈ P for all i < n 2. an /∈ P, 3. a0 /∈ P2.

then f (x) is irreducible.

Eisenstein’s criterion holds, more generally, over a UFD.

To prove this, assume

f (x) =
(
b0 + b1x + · · ·+ bkxk

)(
c0 + c1x + · · ·+ c`x `

)
∈ R[x ], k, ` > 0,

and p | b0.

Now, consider the smallest k for which p - bk . . .

The remainder will be left as an exercise.
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Polynomial rings over a field

Proposition
A polynomial f (x) ∈ F [x ] has a factor of degree 1 iff it has a root in F .

Proof
“⇒:” If f (x) has a degree-1 factor, then f (x) = g(x)(x − α). X

“⇐:” If f (α) = 0, use the division algorithm to write

f (x) = g(x)(x − α) + r , r is constant.

But then f (α) = r = 0. �

Corollary
A polynomial f (x) ∈ F [x ] of degree ≤ 3 is reducible iff it has a root in F . �
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Polynomial rings over a field

Remarks
Let F be a field. Then F [x ] is Euclidean (and hence a PID).
1. The following are equivalent:

(i) f (x) is irreducible,

(ii) I =
(
f (x)

)
is a maximal ideal of F [x ],

(iii) F [x ]/(f (x)) is a field.

2. If a polynonomial factors as

f (x) = f1(x)d1 f2(x)d2 · · · fk (x)dk , fi (x) distinct irreducibles,

then gcd
(
fi (x)di , fj (x)dj

)
= 1 for i 6= j .

By the Sunzi remainder theorem,

F [x ]/(f (x)) ∼= F [x ]/
(
f1(x)d1

)
× · · · × F [x ]/

(
fk (x)dk

)
.
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Multivariate polynomial rings

We can define multivariate polynomial rings inductively.

Definition
The polynomial ring in variables x1, . . . , xn over R is

R[x1, . . . , xn] := R[x1, . . . , xn−1][xn].

Note that

R[x1] ⊆ R[x1, x2] ⊆ R[x1, x2, x3] ⊆ · · · , R[x1, x2, x3, . . . ] =

∞⋃
k=1

R[x1, . . . , xk ].

Not surprisingly, this last ring has non-finitely generated ideals, e.g., I = (x1, x2, . . . ).

Perhaps surprisingly, this is not the case in R[x1, . . . , xn].

Hilbert’s basis theorem
If R is a Noetherian ring, then R[x1, . . . , xn] is Noetherian as well.

It suffices to prove this for n = 1.
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Proof of Hilbert’s basis theorem
Given I E R[x ] and m ≥ 0, the ideal of leading coefficients of degree-m polynomials is:

I (m) :=
{
am | f (x) = amxm + · · ·+ a1x + a0 ∈ I

}
∪ {0}E R.

Let Ir (s) be a maximal element of
{
In(m) | n,m ≥ 0

}
.

I2

I1

I0

...

⊆
⊆

⊆

I0(0)

⊆

I1(0)

⊆

I2(0)

⊆

...

⊆

⊆

⊆

I0(1)

⊆

I1(1)

⊆

I2(1)

⊆
...

⊆

⊆

⊆

· · ·

· · ·

· · ·

⊆

⊆

⊆

I0(s−1)

⊆
I1(s−1)

⊆

I2(s−1)

⊆

...

⊆

⊆

⊆

· · ·

I0(s)
⊆

I1(s)

⊆

I2(s)

⊆

...

Ir(s)

=

...

⊆

⊆

⊆

=

· · ·

· · ·

· · ·

Ir(s+1)

=

...

= · · ·
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Proof of Hilbert’s basis theorem

Lemma
Let I ⊆ J be ideals of R[x ]. If I (m) = J(m) for all m, then I = J.

I(0)

=

J(0)

⊆

⊆

I(1)

=

J(1)

⊆

⊆

· · ·

· · ·

⊆

⊆

I(s−1)

=

J(s−1)

⊆

⊆

I(s)

=

J(s)

⊆

⊆

· · ·

· · ·

Proof
If not, then pick f (x) ∈ J − I of minimal degree m > 0.

Since I (m) = J(m), there is some g(x) ∈ I of degree m with

f (x) = amxm + am−1xm−1 + · · ·+ a1x + a0, g(x) = amxm + bm−1xm−1 + · · ·+ b1x + b0.

Then f (x)− g(x) is in J − I with smaller degree. �
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Proof of Hilbert’s basis theorem
Let nm = where the sequence In(m) ⊆ In+1(m) ⊆ · · · stabilizes, and N = max

0≤m<s
{nm}.

•
max’l elementIr (s)

•

•

•

•

•

•

IN(m) = IN+i (m), ∀m ≥ 0 ⇒ IN = IN+i

s

r

N

m

n

I7

I6

I5

I4

I3

I2

I1

I0

...
=

=
⊆

⊆
⊆

⊆
⊆

⊆

=

=

=

=

=

=

=

=

= = = = = = = = =

=
=

=

= =
=

=
=

=

=
=

=
=

= =
=

=
=

=
=

= =

= = =

= = =

= = =
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An counterexample to Hilbert’s basis theorem?

The ring R=2Z is Noetherian because every ideal is finitely generated (actually, principal).

Consider the polynomial ring

R[x ] = 2Z[x ] =
{
a0 + a1x + · · ·+ anxn | ai ∈ 2Z, n ∈ N

}
=
{
2c0 + 2c1x + · · ·+ 2cnxn | ci ∈ Z, n ∈ N

}
,

with the following ideals:

(2) =
{
2c0 + 4c1x + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
,

(2, 2x) =
{
2c0 + 2c1x + 4c2x2 + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
,

(2, 2x , 2x2) =
{
2c0 + 2c1x + 2c2x2 + 4c3x3 + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
.

(2, 2x , 2x2, 2x3) =
{
2c0 + 2c1x + 2c2x2 + 2c3x3 + 4c4x4 + · · ·+ 4cnxn | ci ∈ Z, n ∈ N

}
.

We now have an ascending sequence of ideals that does not terminate:

(2) ( (2, 2x) ( (2, 2x , 2x2) ( (2, 2x , 2x2, 2x3) ( · · · .

Therefore, R[x ] is not Noetherian.
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