Read: Lax, Chapter 1, pages 1-11.

1. Let X be a vector space over a field K. Let 0 be the zero element of K and $\mathbf{0}$ the zeroelement of X. Using only the definitions of a group, a vector space, and a field, carefully prove each of the following:
(a) The identity element e of a group is unique.
(b) In any group G, the inverse of $g \in G$ is unique.
(c) $0 x=\mathbf{0}$ for every $x \in X$;
(d) $k \mathbf{0}=\mathbf{0}$ for every $k \in K$;
(e) For every $k \in K$ and $x \in X$, if $k x=\mathbf{0}$, then $k=0$ or $x=\mathbf{0}$.
2. Let X be a vector space over K, and let S be a linearly independent subset of X. The following is called the exchange property: For any nonzero $x_{0} \in \operatorname{Span}(S)$, there exists $x_{1} \in S$ such that $S^{\prime}=\left(S \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{0}\right\}$ is a basis for $\operatorname{Span}(S)$.
(a) Prove the exchange property.
(b) Suppose that B is a size- n basis for X, and let B^{\prime} be another basis. Use the exchange property to show that $\left|B^{\prime}\right|=n$.
3. Let X_{1}, X_{2} be a subspace of a finite-dimensional K-vector space X. Show that $\operatorname{dim}\left(X_{1} \times\right.$ $\left.X_{2}\right)=\operatorname{dim}\left(X_{1} \oplus X_{2}\right)$.
4. If Y is a subspace of X, then two vectors $x_{1}, x_{2} \in X$ are congruent modulo Y, denoted $x_{1} \equiv x_{2} \bmod Y$, if $x_{1}-x_{2} \in Y$. This is an equivalence relation; denote the equivalence class containing $x \in X$ by $\{x\}$, and let X / Y denote the set of equivalence classes. We can make X / Y into a vector space by defining addition and scalar multiplication as follows:

$$
\{x\}+\{z\}:=\{x+z\}, \quad a\{x\}:=\{a x\} .
$$

(a) Show that these operations are well-defined. That is, they do not depend on the choice of congruence class representatives.
(b) Prove that for any $x \in X$, the following two sets are equal as subsets of X :

$$
\{x\}=\{x+y \mid y \in Y\} .
$$

This motivates the alternative "coset notation" of $x+Y$ for the equivalence class of x modulo Y. Show how to add and scalar multiply in this notation by computing:

$$
(x+Y)+(z+Y), \quad \text { and } \quad a(x+Y), \quad x, z \in X, a \in K .
$$

(c) Assume $\operatorname{dim} X<\infty$. Show that X is isomorphic to $Y \times X / Y$ by defining an explicit map and showing that it is linear and a bijection.
5. Let Z be a subspace of X.
(a) Show that if $Z \leq Y \leq X$, then Y / Z is a subspace of X / Z.
(b) Show that every subspace of X / Z arises in this manner.

