Read: Lax, Chapter 2, pages 13-18.

1. The characteristic of a field K, denoted char K, is the smallest positive integer n for which $n 1:=\underbrace{1+1+\cdots+1}_{n \text { times }}=0$, or zero if no such n exists.
(a) Show that if K and L are fields with $K \leq L$, then L is a vector space over K.
(b) Show that the characteristic of a field is either zero or prime.
(c) Show that if K is a finite field, then $|K|$ is a prime power.
(d) Show that if K and L are finite fields with $K \subset L$ and $|K|=p^{m}$ and $|L|=p^{n}$, then m divides n.
2. Let X be a vector space over a field K and let X^{\prime} be the the set of linear functions from X to K, also known as the dual space of X.
(a) Let x_{1}, \ldots, x_{n} be a basis for X. Define $\ell_{j} \in X^{\prime}$ by $\ell_{j}\left(x_{i}\right)=\delta_{i j}$. Show that $\ell_{1}, \ldots, \ell_{n}$ is a basis for X^{\prime}; it is called the dual basis of x_{1}, \ldots, x_{n}.
(b) Find the dual basis of $x_{1}=(1,-1,3), x_{2}=(0,1,-1)$, and $x_{3}=(0,3,-2)$ in $X=\mathbb{R}^{3}$.
(c) Express the scalar function $f \in X^{\prime}$, where $f(x, y, z)=2 x-y+3 z$ as a linear combination of the dual basis, $\ell_{1}, \ell_{2}, \ell_{3}$, from Part (b).
3. Let S be a subset of X. The annihilator of S is the set

$$
S^{\perp}=\left\{\ell \in X^{\prime} \mid \ell(s)=0 \text { for all } s \in S\right\}
$$

(a) Show that $\operatorname{span}(S)$ is the intersection of all subspaces T_{α} of X that contain S :

$$
\operatorname{span}(S)=\bigcap_{S \subseteq T_{\alpha} \leq X} T_{\alpha}
$$

making it well-founded to speak of the "smallest subpace of X that contains S."
(b) Show that S^{\perp} is a subspace of X^{\prime}, and that $S^{\perp}=\operatorname{span}(S)^{\perp}$.
4. Let \mathcal{P}_{2} be the vector space of all polynomials $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$ over \mathbb{R}, with degree ≤ 2. Let $\xi_{1}, \xi_{2}, \xi_{3}$ be distinct real numbers, and define

$$
\ell_{j}: \mathcal{P}_{2} \longrightarrow \mathbb{R}, \quad \ell_{j}(p)=p\left(\xi_{j}\right) \quad \text { for } \quad j=1,2,3
$$

(a) Show that $\ell_{1}, \ell_{2}, \ell_{3}$ is a basis for the dual space \mathcal{P}_{2}^{\prime}.
(b) Find polynomials $p_{1}(x), p_{2}(x), p_{3}(x)$ in \mathcal{P}_{2} of which $\ell_{1}, \ell_{2}, \ell_{3}$ is the dual basis in \mathcal{P}_{2}^{\prime}.
5. Let X be a vector space with basis x_{1}, \ldots, x_{4}, and W the subspace spanned by $x_{1}-x_{3}+2 x_{4}$ and $2 x_{1}+3 x_{2}+x_{3}+x_{4}$. Find a basis for the annihilator of W. Write you answer in terms of the dual basis vectors $\ell_{1}, \ldots, \ell_{4}$ of X^{\prime}.

