Read: Lax, Chapter 3, pages 19-25, 28-31.

1. Let $T: X \rightarrow U$ be a linear map. Prove the following:
(a) The image of a subspace of X is a subspace of U.
(b) The inverse image of a subspace of U is a subspace of X.
2. Let X and U be vector spaces, and suppose that Y is a subspace of X. Let $Q: X \rightarrow X / Y$ be the canonical quotient map sending $x \stackrel{Q}{\longmapsto}\{x\}$, and let $T: X \rightarrow U$ be a linear map. State and prove a condition that is both necessary and sufficient for the existence of a unique linear map $S: X / Y \rightarrow U$ such that $T=S \circ Q$. When this happens, the map T is said to factor through the quotient space, as shown by the following commutative diagram:

3. Suppose $T: X \rightarrow X$ is a linear map of rank 1 .
(a) Show that there exists $c \in K$ such that $T^{2}=c T$.
(b) Show that if $c \neq 1$, then $I-T$ has an inverse.
4. Suppose that $S, T: X \rightarrow X$ are linear maps.
(a) Show that $\operatorname{rank}(S+T) \leq \operatorname{rank}(S)+\operatorname{rank}(T)$.
(b) Show that $\operatorname{rank}(S T) \leq \operatorname{rank}(S)$.
(c) Show that $\operatorname{dim}\left(N_{S T}\right) \leq \operatorname{dim} N_{S}+\operatorname{dim} N_{T}$.

For each of these, without using matrices, give an explicit example of where equality holds, and another where it does not.
5. Let $T: X \rightarrow X$ be linear, with $\operatorname{dim} X=n$.
(a) Prove that if $T^{2}=T$, then $X=R_{T} \oplus N_{T}$.
(b) Show by example that if $T^{2} \neq T$, then $X=R_{T} \oplus N_{T}$ need not hold.
(c) Prove that $N_{T^{n}}=N_{T^{n+1}}$ and $R_{T^{n}}=R_{T^{n+1}}$.
(d) Prove that $X=R_{T^{n}} \oplus N_{T^{n}}$.
(e) Show there exists a linear map $S: X \rightarrow X$ such that $S T=T S$ and $S T^{n+1}=T^{n}$.

