Read: Lax, Chapter 5, pages 44–56.

- 1. Let S_n denote the set of all permutations of $\{1, \ldots, n\}$.
 - (a) Prove that $sgn(\pi_1 \circ \pi_2) = sgn(\pi_1) sgn(\pi_2)$.
 - (b) Prove that $sgn(\tau) = -1$ for all transpositions $\tau \in S_n$.
 - (c) Let $\pi \in S_n$, and suppose that $\pi = \tau_k \circ \cdots \circ \tau_1 = \sigma_\ell \circ \cdots \circ \sigma_1$, where $\tau_i, \sigma_j \in S_n$ are transpositions. Prove that $k \equiv \ell \mod 2$.
- 2. Let f be a non-degenerate symmetric bilinear form over an n-dimensional vector space X. That is, for all nonzero $x \in X$, there is some $y \in X$ for which $f(x, y) \neq 0$. Consequently, fixing any nonzero $x \in X$ defines a nonzero dual vector

$$f(x,-) \in X', \qquad f(x,-) \colon y \longmapsto f(x,y).$$

- (a) Prove that the map $L_f: X \to X'$ given by $L_f: x \mapsto f(x, -)$ is an isomorphism.
- (b) Let x_1, \ldots, x_n be a basis for X. Express the dual basis ℓ_1, \ldots, ℓ_n in this form. That is, find g for which $L_q \colon x_i \mapsto \ell_i$.
- (c) Show how to construct another basis y_1, \ldots, y_n such that $f(x_i, y_j) = \delta_{ij}$.
- (d) Conversely, prove that if $\mathcal{B}_X = \{x_1, \dots, x_n\}$ and $\mathcal{B}_Y = \{y_1, \dots, y_n\}$ are sets of vectors in X with $f(x_i, y_j) = \delta_{ij}$, then \mathcal{B}_X and \mathcal{B}_Y are bases for X.
- 3. Let f be a non-degenerate symmetric bilinear form over an n-dimensional vector space, where $1+1\neq 0$.
 - (a) Show that there exists $x_1 \in X$ with $f(x_1, x_1) \neq 0$.
 - (b) Let Z_1 be the nullspace of $f(x_1, -)$. Show that f restricted to Z_1 is non-degenerate.
 - (c) Construct a basis $\{z_1, \ldots, z_n\}$ for X that satisfies $f(z_i, z_j) = \delta_{ij}$.
- 4. Let f be a bilinear form over a vector space X with basis $\{x_1, x_2\}$.
 - (a) Assume f is alternating. Determine a formula for f(u,v) in terms of each $f(x_i,x_j)$ and the coefficients used to express u and v with this basis. [Pun intended!]
 - (b) Repeat Part (a) but assume that f is symmetric and f(x,x) = 0 for all $x \in X$.
- 5. Prove the following properties of the trace function:
 - (a) tr(AB) = tr(BA) for all $m \times n$ matrices A and $n \times m$ matrices B.
 - (b) If A is square, write down a formula for $tr(AA^T)$ in terms of a_{ij} .