Read: Lax, Chapter 5, pages 44-56.

1. Let S_{n} denote the set of all permutations of $\{1, \ldots, n\}$.
(a) Prove that $\operatorname{sgn}\left(\pi_{1} \circ \pi_{2}\right)=\operatorname{sgn}\left(\pi_{1}\right) \operatorname{sgn}\left(\pi_{2}\right)$.
(b) Prove that $\operatorname{sgn}(\tau)=-1$ for all transpositions $\tau \in S_{n}$.
(c) Let $\pi \in S_{n}$, and suppose that $\pi=\tau_{k} \circ \cdots \circ \tau_{1}=\sigma_{\ell} \circ \cdots \circ \sigma_{1}$, where $\tau_{i}, \sigma_{j} \in S_{n}$ are transpositions. Prove that $k \equiv \ell \bmod 2$.
2. Let f be a non-degenerate symmetric bilinear form over an n-dimensional vector space X. That is, for all nonzero $x \in X$, there is some $y \in X$ for which $f(x, y) \neq 0$. Consequently, fixing any nonzero $x \in X$ defines a nonzero dual vector

$$
f(x,-) \in X^{\prime}, \quad f(x,-): y \longmapsto f(x, y) .
$$

(a) Prove that the map $L_{f}: X \rightarrow X^{\prime}$ given by $L_{f}: x \mapsto f(x,-)$ is an isomorphism.
(b) Let x_{1}, \ldots, x_{n} be a basis for X. Express the dual basis $\ell_{1}, \ldots, \ell_{n}$ in this form. That is, find g for which $L_{g}: x_{i} \mapsto \ell_{i}$.
(c) Show how to construct another basis y_{1}, \ldots, y_{n} such that $f\left(x_{i}, y_{j}\right)=\delta_{i j}$.
(d) Conversely, prove that if $\mathcal{B}_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathcal{B}_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ are sets of vectors in X with $f\left(x_{i}, y_{j}\right)=\delta_{i j}$, then \mathcal{B}_{X} and \mathcal{B}_{Y} are bases for X.
3. Let f be a non-degenerate symmetric bilinear form over an n-dimensional vector space, where $1+1 \neq 0$.
(a) Show that there exists $x_{1} \in X$ with $f\left(x_{1}, x_{1}\right) \neq 0$.
(b) Let Z_{1} be the nullspace of $f\left(x_{1},-\right)$. Show that f restricted to Z_{1} is non-degenerate.
(c) Construct a basis $\left\{z_{1}, \ldots, z_{n}\right\}$ for X that satisfies $f\left(z_{i}, z_{j}\right)=\delta_{i j}$.
4. Let f be a bilinear form over a vector space X with basis $\left\{x_{1}, x_{2}\right\}$.
(a) Assume f is alternating. Determine a formula for $f(u, v)$ in terms of each $f\left(x_{i}, x_{j}\right)$ and the coefficients used to express u and v with this basis. [Pun intented!]
(b) Repeat Part (a) but assume that f is symmetric and $f(x, x)=0$ for all $x \in X$.
5. Prove the following properties of the trace function:
(a) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $m \times n$ matrices A and $n \times m$ matrices B.
(b) If A is square, write down a formula for $\operatorname{tr}\left(A A^{T}\right)$ in terms of $a_{i j}$.

