Read: Lax, Chapter 7, pages 77-100.

1. Consider the vector space of all polynomials in $\mathbb{C}[x, y]$ of total degree at most 2 ,

$$
X=\left\{\sum a_{i, j} x^{i} y^{j} \mid a_{i, j} \in \mathbb{C}, 0 \leq i+j \leq 2\right\}
$$

and consider the linear map

$$
D: X \longrightarrow X, \quad f \longmapsto f+\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} .
$$

(a) Write $D$ in matrix form, with respect to the ordered basis $1, x, y, x^{2}, x y, y^{2}$.
(b) Find the minimal and characteristic polynomials, and the Jordan canonical form.
(c) Find a basis of generalized eigenvectors of $D$.
(d) Conjecture how this generalizes to polynomial of total degree at most $n$.
2. Let $X$ be the $x y$-plane and $A: X \rightarrow X$ be a $45^{\circ}$ counterclockwise rotation.
(a) Let $v_{0}=e_{1}=(1,0)^{T}, v_{1}=A v_{0}$, and $v_{2}=A^{2} v_{0}$. Write $v_{2}$ as a linear combination of $v_{0}$ and $v_{1}$, and use this to find the minimal polynomial of $A$.
(b) Write the matrix of $A$ with respect to the basis $v_{0}, v_{1}$, and compare it to the Jordan canonical form.
(c) Repeat the previous parts for a linear map $A: X \rightarrow X$ with eigenvalues $\lambda_{1,2}=r e^{ \pm i \theta}$.
(d) Re-write the matrices in Part (c) in terms of $a$ and $b$, where $a \pm b i=r e^{ \pm i \theta}$.
3. Consider the following matrix over $\mathbb{R}$ :

$$
M=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

(a) Show that if a $\operatorname{deg} f(x)<n$, then $f(M) \neq 0$. [Hint: Show that $f(M) e_{1} \neq 0$.]
(b) Show that the minimal polynomial of $M$ is $f(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$.
4. Let $X$ be a vector space over $\mathbb{R}$ with basis $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and let $T: X \rightarrow X$ be a linear map such that

$$
T\left(x_{1}\right)=x_{2}, \quad T\left(x_{2}\right)=x_{3}, \quad T\left(x_{3}\right)=x_{4}, \quad T\left(x_{4}\right)=-x_{1}-4 x_{2}-6 x_{3}-4 x_{4}
$$

Find the rational and Jordan canonical forms of $T$. Is $T$ diagonalizable over $\mathbb{C}$ ?

