Read: Lax, Chapter 7, pages 89-100.

1. Let X be a complex inner product space, and $A: X \rightarrow X$.
(a) Show that if $\langle A x, x\rangle=0$ for all $x \in X$, then $A=0$.
(b) Give an explicit example of how the previous part fails if X is a real inner product space.
(c) Show that A if self-adjoint if and only if $\langle A x, x\rangle \in \mathbb{R}$ for all $x \in X$.
(d) Show that on a real inner product space, A is self-adjoint and $\langle A x, x\rangle=0$ for all $x \in X$, then $A=0$.
2. Let X be the space of continuous complex-valued functions on $[-1,1]$ and define an inner product on X by

$$
(f, g)=\int_{-1}^{1} f(s) \overline{g(s)} d s
$$

Let $m(s)$ be a continuous function of absolute value 1 , that is, $|m(s)|=1,-1 \leq s \leq 1$. Define M to be multiplication by m :

$$
(M f)(s)=m(s) f(s)
$$

Show that M is unitary.
3. Fix an orthonormal basis of \mathbb{C}^{n}, and let S be the cyclic shift mapping $S\left(a_{1}, \ldots, a_{n}\right)=$ $\left(a_{2}, \ldots, a_{n}, a_{1}\right)$.
(a) Prove that S is unitary.
(b) Find the characteristic and minimal polynomials, eigenvalues, and eigenvectors of S.
(c) Find an orthonormal basis of \mathbb{C}^{n} consisting of eigenvectors of S.
4. Consider the quadratic form $q(x)=2 x_{1}^{2}+6 x_{1} x_{2}+2 x_{2}^{2}$.
(a) Write this as $q(x)=x^{T} A x$, for some A.
(b) Write $A=P D P^{T}$, where D is a diagonal matrix and P is orthogonal with determinant 1.
(c) Change variables by letting $z=P^{T} x$. Sketch the level curve $q(x)=1$ in both the $z_{1} z_{2}$-plane and in the $x_{1} x_{2}$-plane.
5. Let $N: X \rightarrow X$ be a linear map of a finite-dimensional complex inner product space. Prove that the following are equivalent:
(i) N is normal (that is, $N N^{*}=N^{*} N$).
(ii) N is unitarily similar to a diagonal matrix (i.e., $N=U D U^{*}$).
(iii) Every eigenvector of N is an eigenvector of N^{*}.

