1. Consider the following matrices:

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right], \quad A^{T} A=\left[\begin{array}{cc}
5 & 15 \\
15 & 45
\end{array}\right], \quad A A^{T}=\left[\begin{array}{cc}
10 & 20 \\
20 & 40
\end{array}\right] .
$$

(a) Find the eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}$ and unit eigenvectors v_{1}, v_{2} of $A^{T} A$.
(b) For the $\sigma_{i} \neq 0$, compute $u_{i}=A v_{i} / \sigma_{i}$ and verify that indeed $\left\|u_{i}\right\|=1$. Find the other u_{i} by computing the other unit eigenvector of $A A^{T}$.
(c) Construct the left polar decomposition, $A=U P$.
(d) Construct the singular value decomposition (SVD), $A=U \Sigma V^{T}$.
(e) Write down orthonormal bases for each the "four fundamental subspaces": the row space R_{A}, the nullspace N_{A}, the column space $R_{A^{T}}$, and the left nullspace $N_{A^{T}}$.
(f) Describe all matrices that have the same four fundamental subspaces.
(g) Find a left, right, and pseudoinverse of A, or explain why it doesn't exist.
2. Compute the polar and singular value decomposition of the rotation matrix

$$
A=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

where $a, b \in \mathbb{R}$.
3. Consider the matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$.
(a) Construct the singular value decomposition of A.
(b) Write down orthonormal bases for each the "four fundamental subspaces": the row space R_{A}, the nullspace N_{A}, the column space $R_{A^{T}}$, and the left nullspace $N_{A^{T}}$.
(c) Find a left inverse, right inverse, and pseudoinverse of A, or explain why it doesn't exist.
4. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear map defined by $f(x)=M x$ for $x \in \mathbb{R}^{4}$ where $M=A B C$ and

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -2 & 0
\end{array}\right], \quad B=\left[\begin{array}{cccc}
\frac{-1}{\sqrt{3}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & -\sqrt{2} & 0
\end{array}\right], \quad C=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] .
$$

(a) Define the adjoint map $f^{*}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ (under the standard Euclidean inner product) and express it in terms of M.
(b) Find a singular value decomposition (SVD) of M. (Hint: Observe that $A^{T} A$ and $C^{T} C$ are diagonal.)
(c) Find all $x \in \mathbb{R}^{4}$ with $\|x\|=1$ so that $\|M x\|$ is maximized.
(d) Describe the eigenvalues and eigenvectors of $M^{T} M$.
(e) Find the least square solution for $M x=b$ with $\|x\|_{2}$ minimal where $b=(1,1,1)^{T}$. (Hint: Use the pseudo-inverse of M.)

