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Algebraic structures

Definition

A group is a set G and associative binary operation ∗ with:

closure: a, b ∈ G implies a ∗ b ∈ G ;

identity: there exists e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G ;

inverses: for all a ∈ G , there is b ∈ G such that a ∗ b = e.

A group is abelian if a ∗ b = b ∗ a for all a, b ∈ G .

Definition

A field is a set F (or K) containing 1 6= 0 with two binary operations: + (addition) and ·
(multiplication) such that:

(i) F is an abelian group under addition;

(ii) F \ {0} is an abelian group under multiplication;

(iii) The distributive law holds: a(b + c) = ab + ac for all a, b, c ∈ F.

Remarks

Q, R, C, Zp (prime p), Q(
√

2) := {a + b
√

2 : a, b ∈ Q} are all fields.

Z is not a field. Nor is Zn (composite n).

the additive identity is 0, and the inverse of a is −a.

the multiplicative identity is 1, and the inverse of a is a−1, or 1
a

.
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Vector spaces

Definition

A vector space is a set X (“vectors”) over a field F (“scalars”) such that:

(i) X is an abelian group under addition;

(ii) + and · are “compatible” via natural associative and distributive laws relating the two:

a(bv) = (ab)v , for all a, b ∈ F, v ∈ X ;
a(v + w) = av + aw , for all a ∈ F, v ,w ∈ X ;
(a + b)v = av + bv , for all a ∈ F, v ,w ∈ X ;
1v = v , for all v ∈ X .

Intuition

Think of a vector space as a set of vectors that is:

(i) Closed under addition and subtraction;

(ii) Closed under scalar multiplication;

(iii) Equipped with the “natural” associative and distributive laws.

Proposition (exercise)

In any vector space X ,

(i) The zero vector 0 is unique;

(ii) 0x = 0 for all x ∈ X ;

(iii) (−1)x = −x for all x ∈ X . �
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Linear maps

Definition

A linear map between vector spaces X and Y over F is a function ϕ : X → Y satisfying:

ϕ(v + w) = ϕ(v) + ϕ(w), for all v ,w ∈ X ;

ϕ(av) = aϕ(v), for all a ∈ F, v ∈ X .

An isomorphism is a linear map that is bijective (1–1 and onto).

Proposition

The two conditions for linearity above can be replaced by the single condition:

ϕ(av + bw) = aϕ(v) + bϕ(w), for all v ,w ∈ X and a, b ∈ F.

Examples of vector spaces

(i) Kn = {(a1, . . . , an) : ai ∈ K}. Addition and multiplication are defined componentwise.

(ii) Set of functions R −→ R (with K = R).

(iii) Set of functions S −→ K for an abitrary set S .

(iv) Set of polynomials of degree < n, with coefficients from K .

Exercise

In the list of vector spaces above, (i) is isomorphic to (iv), and to (iii) if |S | = n. �
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Subspaces

Definition

A subset Y of a vector space X is a subspace if it too is a vector space. We’ll write Y ≤ X .

Examples

(i) Y = {(0, a2, . . . , an−1, 0) : ai ∈ K} ⊆ Kn.

(ii) Y = {functions with period T
∣∣π} ⊆ {functions R→ R}.

(iii) Y = {constant functions S → K} ⊆ {functions S → K}.
(iv) Y = {a0 + a2x2 + a4x4 + · · ·+ an−1xn−1 : ai ∈ K} ⊆ {polynomials of degree < n}.

Definition

If Y and Z are subsets of a vector space X , then their:

sum is Y + Z = {y + z | y ∈ Y , z ∈ Z};
intersection is Y ∩ Z = {x | x ∈ Y , x ∈ Z}.

Exercise

If Y and Z are subspaces of X , then Y + Z and Y ∩ Z are also subspaces. �
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Spanning and Independence

Definition

A linear combination of vectors x1, . . . , xk is a vector of the form a1x1 + · · ·+ akxk , where
each ai ∈ K .

Definition

Given a subset S ⊆ X , the subspace spanned by S is the set of all linear combinations of
vectors in S , and denoted Span(S).

Exercise

For any subset S ⊆ X ,

Span(S) =
⋂

S⊆Yα≤X

Yα,

where the intersection is taken over all subspaces of X that contain S . �

Definition

The vectors x1, . . . , xk are linearly dependent if we can write a1x1 + · · ·+ akxk = 0, where
not all ai = 0. Otherwise, the vectors are linearly independent.
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Spanning and linear independence

Lemma 1.1

If X = Span(x1, . . . , xn), and the vectors y1, . . . , yk ∈ X are linearly independent, then k ≤ n.

Proof outline (details to be done on the board)

Write y1 = a1x1 + · · ·+ anxn, and assume WLOG that a1 6= 0.

Now, “solve” for x1 and eliminate it, and conclude that

Span(x1, x2 . . . , xn) = Span(y1, x2 . . . , xn) = X

Repeat this process: eliminating each x2, x3, . . . .

Note that k > n is impossible. (Why?) �
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Basis of a vector space

Definition

A set B ⊆ X is a basis for X if:

B spans X . (is “big enough”);

B is linearly independent. (isn’t “too big”).

Exercise

The following are equivalent for a subset B ⊆ X :

(i) B is a basis of X ;

(ii) B is a minimal spanning set;

(iii) B is a maximal linearly independent set.

Examples

Let’s find bases for some familiar vector spaces.

1. Kn = {(a1, . . . , an) : ai ∈ K}. Addition and multiplication are defined componentwise.

2. Set of functions S −→ K from a finite set S .

3. Set of polynomials of degree < n, with coefficients from K .
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Bases

Lemma 1.2

If Span(x1, . . . , xn) = X , then some subset of {x1, . . . , xn} is a basis for X .

Proof

If x1, . . . , xn are linearly dependent, then we can write (WLOG; renumber of necessary)

xn = a1x1 + · · ·+ an−1xn−1 .

Now, Span(x1, . . . , xn−1) = X , and we can repeat this process until the remaining set is
linearly independent. �

Definition

A vector space X is finite dimensional (f.d.) if it has a finite basis.

Examples

(i) In Rn, any two vectors that don’t lie on the same line (i.e., aren’t scalar multiples) are
linearly independent.

(ii) In R3, any three vectors are linearly independent iff they do not lie on the same plane.

(iii) Any two vectors in R2 that aren’t scalar multiples form a basis.
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Dimension

Theorem / Definition 1.3

All bases for a f.d. vector space have the same cardinality, called the dimension of X .

Proof

Let x1, . . . , xn and y1, . . . , ym be two bases for X . By Lemma 1.1, m ≤ n and n ≤ m. �

Theorem 1.4

Every linear independent set of vectors y1, . . . , yj in a finite-dimensional vector space X can
be extended to a basis of X .

Proof

If Span(y1, . . . , yj ) 6= X , then find yj+1 ∈ X not in Span(y1, . . . , yj ), add it to the set and
repeat the process.

This will terminate in less than n = dimX steps because otherwise, X would contain more
than n linearly independent vectors. �
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An example from ODEs

Let X be the set of all smooth functions x(t) that satisfy the second order differential

equation d2

dt2 x + x = 0.

If x1(t), x2(t) are solutions, then so are x1(t) + x2(t) and cx1(t). Thus X is a vector space.

Solutions describe the motion of a mass-spring system (simple harmonic motion). A
particular solution is determined completely by specifying:

x(0) = x0 (initial position) x ′(0) = v0 (initial velocity).

Thus, we can describe an element x(t) ∈ X by a pair (x0, v0), where x0, v0 ∈ R (or in C).

This defines an isomorphism X −→ C2, by x(t) 7−→ (x(0), x ′(0)).

Note that cos x and sin x are two linearly independent solutions, so the general solution to
this ODE is a cos x + b sin x ; a, b ∈ C.

Said differently, {cos x , sin x} is a basis for the solution space of x ′′ + x = 0.

Note that cos x + i sin x = e ix and cos x − i sin x = e−ix are linearly independent, and so
{e ix , e−ix} is another basis! Thus, the general solution can be written as C1e ix + C2e−ix

instead!
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Complements and direct sums

Theorem 1.5

(a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional.

(b) Every subspace Y has a complement in X : another subspace Z such that every vector
x ∈ X can be written uniquely as

x = y + z, y ∈ Y , z ∈ Z , dimX = dimY + dimZ .

Proof

Pick y1 ∈ Y and extend this to a basis y1, . . . , yj of Y . By Lemma 1.1, j ≤ dimX <∞.

Extend this to a basis y1, . . . , yj , zj+1, . . . , zn of X [and define Z := Span(zj+1, . . . , zn)].

Clearly, Y and Z are complements, and dimX = n = j + (n − j) = dimY + dimZ . �

Definition

X is the direct sum of subspaces Y and Z that are complements of each other.

More generally, X is the direct sum of subspaces Y1, . . . ,Ym if every x ∈ X can be expressed
uniquely as

x = y1 + · · ·+ ym, yi ∈ Yi .

We denote this as X = Y1 ⊕ · · · ⊕ Ym.
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Direct products

Definition

The direct product of X1 and X2 is the vector space

X1 × X2 := {(x1, x2) : x1 ∈ X1, x2 ∈ X2} ,

with addition and multiplication defined componentwise.

Proposition

dim(Y1 ⊕ · · · ⊕ Ym) =
m∑
i=1

dimYi ; dim(X1 × · · · × Xm) =
m∑
i=1

dimXi .

Example

Let X = R4, Y1 = {(a, b, 0, 0) : a, b ∈ R}, Y2 = {(0, 0, c, d) : c, d ∈ R}, X1 = X2 = R2.

Clearly, X = Y1 ⊕ Y2, since (a, b, c, d) = (a, b, 0, 0) + (0, 0, c, d) [uniquely].

X1 × X2 =
{(

(a, b), (c, d)
)

: (a, b) ∈ R2, (c, d) ∈ R2
}
∼=
{

(a, b, c, d) : a, b, c, d ∈ R
}

= X .
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Direct sums vs. direct products

In the finite-dimensional cases, there is no difference (up to isomorphism) of direct sums vs.
direct products.

Not the case when dimX =∞. Consider the vector space:

X = R∞ :=
{

(a1, a2, a3, . . . ) : ai ∈ R
} ∼= R× R× R× · · ·

and the following subspaces:

X1 =
{

(a1, 0, 0, 0, . . . , ) : a1 ∈ R}, X2 =
{

(0, a2, 0, 0, . . . , ) : a2 ∈ R}, and so on.

Elements in the subspace X1 ⊕ X2 ⊕ X3 ⊕ · · · of X are finite sums

x = xi1 + xi2 + · · ·+ xik , xij ∈ Xij .

Thus, we can write the direct sum as follows:

X1 ⊕ X2 ⊕ X3 ⊕ · · · =
{

(a1, . . . , ak , 0, 0, . . . ) : ai ∈ R, k ∈ Z
}
( R× R× R× · · ·

Elements in the direct product are sequences, e.g., x = (1, 1, 1, . . . ).

Elements in the direct sum are finite sums, e.g., x = 3e1 − 5.25e4 + 78e11.
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Congruence of subspaces

Sums and products “multiply” vector spaces. We can also “divide” by a subspace.

Definition

If Y is a subspace of X , then two vectors x1, x2 ∈ X are congruent modulo Y , denoted
x1 ≡ x2 (mod Y ), if x1 − x2 ∈ Y .

Proposition (exercise)

Congruence modulo Y is an equivalence relation, i.e., it is:

(i) symmetric: x ≡ y imples y ≡ x ;

(ii) reflexive: x ≡ x for all x ∈ X ;

(iii) transitive: x ≡ y and y ≡ z implies x ≡ z. �

The equivalence classes are called congruence classes mod Y , or cosets. Denote the class
containing x by {x}. [Sometimes written x or x + Y := {x + y : y ∈ Y }.]

Example

Let X = R3, Y = {(x , y , 0) : x , y ∈ R} = xy-plane, Z = {(0, 0, z) : z ∈ R} = z-axis.

v ≡ w mod Y if they lie on the same horizontal plane.

v ≡ w mod Z if they lie on the same vertical line.
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Quotient spaces

Let X/Y denote the set of equivalence classes in X , modulo Y .

This can be made into a vector space by defining addition and scalar multiplication as

{x}+ {z} := {x + z}, a{x} := {ax} .

Need to check that this is well-defined, i.e., that it is independent of the choice of
representative from the classes.

This means showing (HW exercise) that if x1 ≡ x2 mod Y and z1 ≡ z2 mod Y , then

{x1}+ {z1} = {x2}+ {z2}, a{x1} = a{x2}.

Definition

The vector space X/Y is called the quotient space of X modulo Y .

Alternate notations

Since {x} is sometimes written x , or x + Y := {x + y : y ∈ Y }, then addition and
multiplication becomes:

x + z = x + z, and ax = ax ;

(x + Y ) + (z + Y ) = x + z + Y , and a(x + Y ) = ax + Y .
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Dimension of quotient spaces

Theorem 1.6

If Y is a subspace of a finite-dimensional vector space X , then dimY + dimX/Y = dimX .

Proof

Let y1, . . . , yk be a basis for Y . Extend this to a basis y1, . . . , yk , xk+1, . . . , xn of X .

Claim: {xk+1}, . . . , {xn} is a basis of X/Y .

Show this spans X/Y :

Pick {x} in X/Y and write x =
k∑

i=1
aiyi +

n∑
j=k+1

bjxj . By definition,

{x} =
{∑

aiyi +
∑

bjxj

}
=
∑

ai{yi}+
∑

bj{xj} =
∑

bj{xj} .

Show this is linearly independent:

Suppose
n∑

j=k+1
cj{xj} = {0}, which means

∑
cjxj = y for some y ∈ Y .

Write y =
k∑

i=1
diyi , and so

∑
ckxk −

∑
diyi = 0, and hence all ck , di = 0 (Why?). �

Corollary

If a subspace Y of a finite-dimensional space X has dimY = dimX , then Y = X . �
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Dimension of sums

Theorem 1.7

Let U,V be subspaces of a finite-dimensional space X with U + V = X . Then

dimX = dimU + dimV − dim(U ∩ V ) .

Proof

Let W = U ∩ V . The result trivially holds when W = {0} (Theorem 1.5).

Define U = U/W , V = V /W and X = X/W .

Note that U ∩V = {0} (why?), and X = U + V , so dimX = dimU + dimV (Theorem 1.5).

By Theorem 1.6: dimX = dimX − dimW

dimU = dimU − dimW

dimV = dimV − dimW

Therefore, (dimX − dimW ) = (dimU − dimW ) + (dimV − dimW ).

From which it easily follows that dimX = dimU + dimV − dimW . �
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Scalar functions

Let X be a vector space over a field K . A scalar function is any function from X to K .

A scalar function ` : X → K is linear if

`(x + y) = `(x) + `(y), for all x , y ∈ X ;

`(cx) = c`(x), for all x ∈ X , c ∈ K .

Or equivalently, if

`(c1x1 + · · ·+ cnxn) = c1`(x1) + · · ·+ cn`(xn), for all ci ∈ K , xi ∈ X .

Definition

The set of linear scalar functions ` : X → K is a vector space called the dual of X , and
denoted X ′.

Addition and scalar multiplication is defined naturally:

Addition: (`+ m)(x) := `(x) + m(x),

Scalar multiplication: (c`)(x) := c`(x).
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Examples of scalar functions

Example 1

Let X = C([0, 1],R), the continuous functions [0, 1]→ R, and fix t1, . . . , tn ∈ [0, 1]. The
following are linear scalar functions:

`(f ) = f (t1);

`(f ) =
n∑

i=1

ai f (ti ), ai ∈ R;

`(f ) =

∫ 1

0
f (t) dt.

Example 2

Let X = C∞(R) be the set of smooth functions R→ R. For a fixed t0 ∈ R,

` :=
n∑

i=1

ai
d i

dt i

∣∣∣
t=t0

, ` : f 7−→
n∑

i=1

ai
d i f

dt i

∣∣∣
t=t0

is a linear scalar function (i.e., an element of X ′).
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The dual space
If dimX = n, then X ∼= Kn. Thus, we can associate a vector x ∈ X with an n-tuple
x = (c1, . . . , cn) of scalars.

For any fixed a1, . . . , an ∈ K , the function

` : X −→ K , `(x) = a1c1 + · · ·+ ancn (1)

is linear, i.e., ` ∈ X ′.

Theorem 1.8

If dimX = n <∞, then every ` ∈ X ′ can be written as in Eq. (1).

Proof
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The dual space
Corollary 1.9

If dimX <∞, then X ∼= X ’.

One way to think of this is to:

1. associate a vector x ∈ X with a column vector,

2. associate a scalar function ` ∈ X ′ with a row vector.

Notation

A linear function ` ∈ X ′ applied to a vector x ∈ X depends on the n-tuples (c1, . . . , cn) for x
and (a1, . . . , an) for `. We can use scalar product notation

(`, x) := `(x).

Sometimes, elements ` ∈ X ′ are called co-vectors, or dual vectors.

Definition

Let x1, . . . , xn be a basis for X . The dual basis in X ′ is `1, . . . , `n, where

(`i , xj ) =

{
1 i = j

0 i 6= j .

Think of `i as the function that “picks off” the coefficient of xi .
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Duality in infinite dimensional spaces

Consider the vector space

X = `1(R) :=
{

(x1, x2, . . . ) | xi ∈ R,
∞∑
i=1
|xi | <∞

}
.

Given vectors y = (a1, a2, . . . ) and x = (c1, c2, . . . ),

(y , x) =
∞∑
i=1

aici <∞,

so every y ∈ X defines a co-vector in X ′.

But there are others! If z = (1, 1, 1, . . . ),

(z, x) =
∞∑
i=1

ci <∞,

but z 6∈ X .
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The double dual

The scalar product (`, x) is a bilinear function of ` and x . That is, if we fix one argument, it
is linear in the other. Equivalently,

(a`, x)︸ ︷︷ ︸
=a`(x)

= a(`, x) = (`, ax)︸ ︷︷ ︸
`(ax)

for all x ∈ X , ` ∈ X ′, a ∈ K .

If dimX = n <∞, then every linear scalar function X → K is of the form

(`, x), for some fixed ` = (a1, . . . , an) ∈ Kn.

Since X ′ is a vector space, it has a dual, called the double dual of X , and denoted
X ′′ := (X ′)′. Every linear scalar function X ′ → K is of the form

(`, x), for some fixed x = (c1, . . . , cn) ∈ Kn.

Key points

Let x1, . . . , xn be a basis of X

Think of the dual basis `1, . . . , `n as “pick-off functions”

Think of elements in the double dual as “evaluation functions”

The bilinear function (`, x) naturally identifies X ′′ with X .
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Annihilators

Definition

Let Y ≤ X . The set of linear functions that vanish on Y is its annihilator, denoted

Y⊥ =
{
` ∈ X ′ | `(y) = 0, ∀y ∈ Y

}
.

Theorem 1.10

Let Y ≤ X with dimX <∞. Then

dimY + dimY⊥ = dimX .

Proof
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The annihilator of the annihilator

Definition

The dimension of Y⊥ is called the codimension of Y in X , denoted codimY .

By Theorem 1.10,
dimY + codimY = dimX .

Since Y⊥ is a subspace of X ′, its annihilator Y⊥⊥ is a subspace of X ′′.

Theorem 1.11

Assume dimX <∞ and identify X ′′ with X . Then Y⊥⊥ = Y .

Proof
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The annihilator of a subset

We can define the annihilator of an arbitrary subset S ⊆ X , as

S⊥ :=
{
` ∈ X ′ | `(s) = 0, ∀s ∈ S

}
.

Recall that the smallest subspace containing S is

Span(S) =
⋂

S⊆Yα≤X

Yα.

Exercises

Let S ,T ⊆ X .

If S ⊆ T , then T⊥ ⊆ S⊥,

S⊥ = Span(S)⊥.
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