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Preliminaries

Goal

Abstract the concept of a matrix as a linear mapping between vector spaces.

Advantages:

simple, transparent proofs;

better handles infinite dimensional spaces.

Definition (revisted)

A linear map (or mapping, transformation, or operator) between vector spaces X and U over
K is a function T : X → U that is:

(i) additive: T (x + y) = T (x) + T (y), for all x , y ∈ X ,

(ii) homogeneous: T (ax) = aT (x), for all x ∈ X , a ∈ K .

The domain space is X and the target space is U.

Usually we’ll write Tx for T (x), and so additivity is just the distributive law:

T (x + y) = Tx + Ty .

M. Macauley (Clemson) Section 2: Linear maps Math 8530, Advanced Linear Algebra 2 / 38

mailto:macaule@clemson.edu


Examples of linear maps

(i) Any isomorphism;

(ii) X = U =
{

polynomials of degree < n in t
}

, T = d
dt

.

(iii) X = U = R2, T = rotation about the origin.

(iv) X any vector space, U = K (1-dimensional), T any ` ∈ X ′.

(v) X = U = C([0, 1],R), g ∈ X . (Tf )(x) =

∫ 1

0
f (y)g(x − y) dy .

(vi) X = Rn, U = Rm, u = Tx , where ui =
n∑

j=1

tijxj , i = 1, . . . ,m.

(vii) X = U =
{

piecewise cont. [0,∞)→ R of “exponential order”
}

,

(Tf )(s) =

∫ ∞
0

f (t)e−st dt. “Laplace transform”

(viii) X = U =
{

functions with
∫∞
−∞ |f (x)| dx <∞

}
,

(Tf )(ξ) =

∫ ∞
−∞

f (x)e iξx dx . “Fourier transform”
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Basic properties of linear maps

Theorem 2.1

Let T : X → U be a linear map.

(a) The image of a subspace of X is a subspace of U.

(b) The preimage of a subspace of U is a subspace of X .

(Proof is a HW exercise.) �

Definition

The range of T is the image RT := T (X ). The rank of T is dimRT .

The nullspace (or “kernel”) of T is the preimage of 0:

NT := T−1(0) = {x ∈ X | Tx = 0} .

The nullity of T is dimNT .

Remark

A linear map T : X → U is 1–1 if and only if NT = {0}.
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The rank-nullity theorem

Theorem 2.2

Let T : X → U be a linear map. Then dimRT + dimNT = dimX .

Proof
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Consequences of the rank-nullity theorem

Corollary A

Suppose dimU < dimX . Then Tx = 0 for some x 6= 0.

Proof

Example A

Take X = Rn, U = Rm, with m < n. Let T : Rn → Rm be any linear map (see
Example (vi)).

Since m = dimU < dimX < n, Corollary A implies that the system of m equations

n∑
j=1

tijxj = 0 i = 1, . . . ,m

has a non-trivial solution, i.e., not all xj = 0.
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Consequences of the rank-nullity theorem

Corollary B

Suppose dimX = dimU <∞ and the only vector satisfying Tx = 0 is x = 0. Then RT = U.

Proof

Example B

Take X = U = Rn, and T : Rn → Rn given by
n∑

j=1

tijxj = ui , for i = 1, . . . , n.

If the related homogeneous system of equations
n∑

j=1

tijxj = 0, for i = 1, . . . , n, has only the

trivial solution x1 = · · · = xn = 0, then the inhomogeneous system T has a unique solution
for any choice of u1 . . . , un.

[Reason: T : Rn → Rn is an isomorphism.]
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Polynomial interpolation

Let X =
{
p ∈ C[x] | deg p < n

}
and U = Cn.

Pick any distinct s1, . . . , sn ∈ C, and define

T : X −→ U, T : p 7→
(
p(s1), . . . , p(sn)

)
.

Suppose Tp = 0 for some p ∈ X .

Then p(s1) = · · · = p(sn) = 0, which is impossible because p has at most n − 1 distinct
roots.

Therefore NT = {0}, and so Corollary B implies that RT = U.
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Average value of a polynomial

Let X =
{
p ∈ R[x] | deg p < n

}
and U = Rn.

Let I1, . . . , In ⊆ R be pairwise disjoint intervals.

The average value of p over Ij is

pj :=
1

|Ij |

∫
Ij

p(t) dt.

Define the linear function

T : X −→ U, Tp = (p1, . . . , pn).

Suppose Tp = 0. Then pj = 0 for all j , and so any nonzero p must change sign in Ij .

But this would imply that p has n distinct roots, which is impossible.

Thus, NT = {0}, and so RT = U.
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Systems of equations

Our next two applications will rely on the following result from the previous lecture.

Example B

Take X = U = Rn, and T : Rn → Rn given by
n∑

j=1

tijxj = ui , for i = 1, . . . , n.

If the related homogeneous system of equations
n∑

j=1

tijxj = 0, for i = 1, . . . , n, has only the

trivial solution x1 = · · · xn = 0, then the inhomogeneous system T has a unique solution.

Recall that this followed from:

Corollary B

Suppose dimX = dimU and the only vector satisfying Tx = 0 is x = 0. Then RT = U.
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ODEs: the method of undetermined coefficients

Consider the differential equation

ay ′′ + by ′ + cy︸ ︷︷ ︸
homogeneous part

= 5e3t cos 4t︸ ︷︷ ︸
“forcing term”, f (t)

In an ODEs class, you learn that the general solution has the form y(t) = yh(t) + yp(t).

Here, yh(t) is the general solution to the homogeneous equation ay ′′ + by ′ + cy = 0, i.e.,
the nullspace of

L : C∞(R) −→ C∞(R), L : y 7−→ ay ′′ + by ′ + cy .

If the forcing term f (t) = 5e3t cos 4t doesn’t solve the homogeneous equation, we can find
a“particular solution” of the form yp(t) = Ae3t cos 4t + Be3t sin 4t.

But why does this work? Let X = Span(e3t cos 4t, e3t sin 4t).

The only solution to the homogeneous equation Ly = 0 in X is y = 0.

We are trying to solve the inhomogeneous equation Ly = f , and f ∈ X .

By Example B, there is a unique yp ∈ X satisfying Lyp = f .
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PDEs: numerical solutions to Laplace’s equation

Laplace’s equation is ∆u = uxx + uyy = 0, where ∆ = ∂2

∂x2 + ∂2

∂y2 is a linear operator.

Solutions to Laplace’s PDE (“harmonic functions”) are the functions in the nullspace of ∆.

If we fix the value of u on the boundary of a region G ⊂ R2, the solution to the boundary
value problem ∆u = 0 is as “flat as possible”. [Think: plastic wrap stretched around ∂G .]

This models steady-state solutions to the heat equation PDE: ut = ∆u.

The finite difference method is a way to solve ∆u = 0 numerically, using a square lattice
with mesh spacing h > 0.

At a fixed lattice point O, let u0 be the value of u at O, and uW , uE , uN , uS be the values
at the neighbors.

We can approximate the derivatives with centered differences:

uxx ≈
uW − 2u0 + uE

h2
, uyy ≈

uN − 2u0 + uS

h2
.

Plugging this back into ∆u = 0 gives u0 =
uW + uN + uE + uS

4
, i.e., u0 is the average of its

four neighbors.
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Numerical solutions to Laplace’s equation (contin.)

Recall that we are trying to solve an inhomogeneous boundary value problem for Laplace’s
equation

∆u = 0 , u|∂G = f (x , y) 6= 0.

Claim

The homogeneous equation: ∆u = 0, where u = 0 on ∂G , has only the trivial solution
u0 = 0 for all (x , y) ∈ G .

Proof (sketch)

Let Ô be the lattice point at which u achieves its maximum value.

Since u0 =
uW + uN + uE + uS

4
, then u0 = uW = uN = uE = uS .

Repeating this, we see that all lattice points take the same value for u, and so u = 0.

By the result in Example B, the related inhomogeneous system for ∆u = 0, with arbitrary
(non-zero) boundary conditions has a unique solution. �
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The algebra of linear maps

Definition

Let S ,T : X → U be linear maps. Define

T + S by (T + S)(x) = Tx + Sx for each x ∈ X .

aT by (aT )(x) = T (ax) for each x ∈ X , a ∈ K .

Easy fact

The set of linear maps from X → U, denoted Hom(X ,U), or L (X ,U), is a vector space.

Lemma 2.3 (HW)

If T : X → U and S : U → V are linear maps, then so is (S ◦ T ) : X → V .

Moreover, composition is distributive w.r.t. addition. That is, if P,T : X → U and
R,S : U → V , then

(R + S) ◦ T = R ◦ T + S ◦ T , S ◦ (T + P) = S ◦ T + S ◦ P .

Remarks

We usually just write S ◦ T as just ST .

In general, ST 6= TS (note that TS may not even be defined).
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Invertibility

Definition

A linear map T is invertible if it is 1–1 and onto (i.e., if it is an isomorphism). Denote the
inverse by T−1.

Exercise

If T is invertible, then TT−1 is the identity.

Proposition 2.4 (exercise)

Let T : X → U be linear.

(i) If T is linear, then so is T−1.

(ii) If S and T are invertible and ST defined, then it is invertible with (ST )−1 = T−1S−1.

Examples

(ix) Take X = U = V = R[t], with T = d
dt

and S = multiplication by t.

(x) Take X = U = V = R3, with S a 90◦-rotation around the x1 axis, and T a 90◦-rotation
around the x2 axis.

In both of these examples, S and T are linear with ST 6= TS . (Which are invertible?)
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More on the algebra of linear maps

Definition

An endomorphism of X is a linear map from X to itself. Denote the set of endomorphisms of
X by Hom(X ,X ) or L (X ,X ) or End(X ).

Remarks

Hom(X ,X ) is a vector space, but we can also “multiply” vectors; it is an algebra.

It is an associative but noncommutative algebra, with unity I , satisfying Ix = x .

Hom(X ,X ) contains zero divisors: pairs S,T such that ST = 0 but neither S nor T is zero.

Proposition

If A ∈ Hom(X ,X ) is a left inverse of B ∈ Hom(X ,X ) [i.e., AB = I ], then it is also a right
inverse [i.e., BA = I ]. �

Definition

The invertible elements of Hom(X ,X ) forms the general linear group, denoted GLn(K),
where n = dimX .

Every S ∈ GLn(K) defines a similarity transformation φS of Hom(X ,X ), sending
M 7−→ MS := SMS−1, for each M ∈ Hom(X ,X ). We say M and MS are similar.
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Similarity

Proposition 2.5

Every similarity transform is an automorphism [“structure-preserving bijection”] of
Hom(X ,X ):

(kM)S = kMS , (M + N)S = MS + NS , (MN)S = MSNS .

Moreover, the set of similarity transforms forms a group under (MS )T := MTS , called the
inner automorphism group of GLn(K).

Proof

Proposition 2.6 (exercise)

Similarity is an equivalence relation, i.e., it is:

(i) Reflexive: M ∼ M;

(ii) Symmetric: L ∼ M implies M ∼ L;

(iii) Transitive: L ∼ M and M ∼ N implies L ∼ N. �
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More on the algebra of linear maps

Proposition 2.7

If either A or B in Hom(X ,X ) is invertible, then AB and BA are similar. �

Given any A ∈ Hom(X ,X ) and polynomial p(t) = aN t
N + · · ·+ a1t + a0, consider the

polynomial p(A) = aNA
N + · · ·+ a1A + a0I .

The set of polynomials in A is a commutative subalgebra of Hom(X ,X ). [to be revisited]

Miscellaneous definitions

A linear map P : X → X is a projection if P2 = P.

The commutator of A,B ∈ Hom(X ,X ) is [A,B] := AB − BA, which is 0 iff A and B
commute.

Examples (contin.)

(xii) If X = {f : R→ R, contin.}, then the following maps P,Q ∈ Hom(X ,X ) are
projections:

(Pf )(x) =
f (x) + f (−x)

2
; this is the even part of f .

(Qf )(x) =
f (x) − f (−x)

2
; this is the odd part of f .

Note that f = Pf + Qf for any f ∈ X .
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Overview

Soon, we will learn about the transpose of a linear map, and then how to encode an arbitrary
linear map with a matrix.

Though it is not necessary, it is helpful to have some familiarity with undergraduate-level
matrix analysis before seeing these.

Let’s review now the “four subspaces” that arise from every matrix:

1. column space

2. row space

3. nullspace

4. left nullspace

Understanding these subspaces will motivate the more theoretical concepts and results as
they arise, and give them context.

Throughout, we strongly recommend viewing:

1. vectors x ∈ X as column vectors

2. scalar functions ` ∈ X ′ as row vectors.
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Column space, and row space

Let A : Rn → Rm be a linear map, which we can think of as an m × n matrix, A = (aij ).

The transpose is a linear map AT : Rm → Rn, which we can think of as an n ×m matrix.

Definition

The range RA is the span of the column vectors, called the column space of A.

Its dimension is called the column rank of A.

The range RAT is the span of the column vectors of AT , called the row space of A.

Its dimension is called the row rank of A.

Theorem

dimRA = dimRAT , which we call the rank of A.

Moreover, the restriction of A : RAT → RA is bijective.
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Column space, row space, nullspace and left nullspace

(picture on board)
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Four ways to multiply matrices

Suppose we have linear maps Rp B−→ Rn A−→ Rm. As matrices, we can multiply them:

1. rows by columns

2. by columns

3. by rows

4. columns by rows
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Systems of equations and Gaussian elimination

Let’s review how to solve a system of equations, and how it relates to the 4 subspaces.

x1 + x2 + 2x3 + 3x4 = u1

x1 + 2x2 + 3x3 + x4 = u2

2x1 + x2 + 2x3 + 3x4 = u3

3x1 + 4x2 + 6x3 + 2x4 = u4
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The transpose of a linear map

Every undergraduate linear algebra student learns about the transpose of a matrix, formed by
flipping it across its main diagonal.

But what does this really represent?

The transpose of a matrix is what results from swapping rows with columns.

In our setting, we like to think about vectors in X as column vectors, and dual vectors in X ′

as row vectors.

The transpose is a more general concept than just an operation on matrices.

Given a linear map T : X → U, its transpose is a certain induced linear map T ′ : U′ → X ′

between the dual spaces.

Now we’ll learn how to encode linear maps with matrices. When we do this, the matrix of
the transpose map will simply be the tranpose of the matrix.

Let’s start with the definition of transpose of a linear map and then learn about some basic
properties.
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The transpose of a linear map

Let T : X → U be linear and ` ∈ U′.

The composition m := `T is a linear map X → K .

Since T is fixed, this defines a linear map, called the transpose of T :

T ′ : U′ −→ X ′, T ′ : ` 7−→ m ,

X

T

��

m

$$
K

U
`

::

Using scalar product notation we can rewrite m(x) = `(T (x)) as (m, x) = (`,Tx).

Key property

The transpose of T : X → U is the (unique) map T ′ : U′ → X ′ that satisfies m = T ′`, i.e.,

(T ′`, x) = (`,Tx) , for all x ∈ X , ` ∈ U′ .

Caveat: We are writing `T for ` ◦ T , but T ′` for T ′(`) (much like Tx for T (x)).

Properties (HW exercise)

Whenever meaningful, we have

(ST )′ = T ′S ′ , (T + R)′ = T ′ + R′ , (T−1)′ = (T ′)−1 .
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Another example of a linear map, and its transpose

Examples (cont.)

(xi) Let X = RN , U = RM , and Tx = u, where ui =
N∑
j=1

tijxj .

X = RN

T

��

m

((
K = R

U = RM
`

66

x_

T

��

�
m

((
(`, u) = (m, x)

u
- `

66

By definition, for some `1, . . . , `m ∈ K ,

(`, u) =
M∑
i=1

`iui =
M∑
i=1

`i

 N∑
j=1

tijxj

 =
M∑
i=1

N∑
j=1

`i tijxj =
N∑
i=1

`i M∑
j=1

tijxj

 =
N∑
j=1

mjxj

This gives us a formula for m = (m1, . . . ,mN), where (`, u) = (m, x).

We’ll see later that if we express T in matrix form, then T ′ is formed by making the rows of
T the columns of T ′.
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What does this really mean?

(`, u) =
M∑
i=1

`iui =
M∑
i=1

`i

 N∑
j=1

tijxj

 =
M∑
i=1

N∑
j=1

`i tijxj =
N∑
i=1

`i M∑
j=1

tijxj

 =
N∑
j=1

mjxj
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The nullspace of the transpose

Proposition 2.8

If X ′′ and U′′ are canonically identified with X and U, respectively, then T ′′ = T . �

Proposition 2.9

The annihilator of the range of T is the nullspace of its transpose, i.e., R⊥T = NT ′ .

Proof

Applying ⊥ to both sides of R⊥T = NT ′ (Proposition 2.9) yields the following:

Corollary 2.10

The range of T is the annihilator of the nullspace of T ′, i.e., RT = N⊥
T ′ . �
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The rank of the transpose

Theorem 2.11

For any linear mapping T : X → U, we have dimRT = dimRT ′ .

Proof

Corollary 2.12

Let T : X → U be linear with dimX = dimU. Then dimNT = dimNT ′ .

Proof
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How to encode a linear map with a matrix

Let T : X → U be a linear map between finite-dimensional vector spaces.

To encode T as a matrix, we’ll need to choose:

1. an “input basis” BX = {x1, . . . , xn} for X ,

2. an “output basis” BU = {u1, . . . , um} for U.

Let {`1, . . . , `m} be the dual basis of BU .

First, we write the images of the basis vectors in BX using the basis vectors in BU :

Tx1 =

Tx2 =

...

Txj =

...

Txn =
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Summary of how to write a linear maps as a matrix

Let T : X → U. The matrix A of T w.r.t. bases BX = {x1, . . . , xn} and BU = {u1, . . . , um}
is

A = BX

[
T
]
BU

=
[
Tx1 Tx2 · · · Txn

]
.

Remarks

The range of T is the span of the column vectors – the column space.

aij = (`i ,Txj ),

Tx1 = a11u1 + a21u1 + · · ·+ ai1uj + · · ·+ am1um

Tx2 = a12u1 + a22u1 + · · ·+ ai2uj + · · ·+ am2um

...

Txj = a1ju1 + a2ju1 + · · ·+ aijuj + · · ·+ amjum

...

Txn = a1nu1 + a2nu1 + · · ·+ ainuj + · · ·+ amnum

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


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Example 1

Let T : R2 → R2 be the projection onto the line y = x .
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An interesting choice of basis

Proposition

If T : X → U is invertible, we can always choose BX and BU so the matrix is the identity.

More generally, for any T : X → U, we can choose BX and BU so the matrix in block form is

A = BX

[
T
]
BU

=

[
Ir×r 0

0 0

]
.
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Example 2

Let X = {c0 + c1x + c2x2 | ci ∈ R} with basis BX = {1, x , x2}.

Let U = {c0 + c1x | ci ∈ R} with basis BU = {1, x}.

Let T =
d

dx
, and so T : c0 + c1x + c2x2 7→ c1 + 2c2x .
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The matrix of the transpose

Let T : X → U be linear, and pick bases BX = {x1, . . . , xn} and BU = {u1, . . . , um}.

Let BU′ = {`1, . . . , `m} be the dual basis of BU .

Let A = (aij ) be the matrix of T w.r.t. these bases.

In plain English, aij is the result of:

1. starting with the jth basis vector in X ,

2. applying the map T ,

3. applying the ith dual basis vector in U′.

Let’s apply these steps to the transpose map T ′ : U′ → X ′ to find its matrix form, A′ = (a′ij ).
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Change of basis

Previously, we learned how a linear map T : X → U is encoded by a matrix, with respect to
an input basis BX and output basis BU .

It is natural to ask how changing the bases changes the matrix.

We will answer this question now.

In the special case of T : X → X , we will see that two matrices A and B can represent the
same linear map if they are similar. That is,

A = PBP−1, for some invertible matrix P.

We will show to how construct such a P, which is called a change of basis matrix.
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Change of basis matrices

Let T : X → U be linear, and x1, . . . , xn and u1, . . . , um be bases.

Since dimX = n and dimU = m, we have X ∼= Kn and U ∼= Km. (Let’s say K = R.)
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An example in R2

Let T : R2 → R2 be linear, and A the 2× 2 matrix w.r.t. the standard basis e1, e2 ∈ R2.

Let’s see what the matrix is with respect to a different basis, v1 =

[
a
c

]
and v2 =

[
b
d

]
.
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