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Overview

One of the goals of this section is to understand the concept of the determinant in a
basis-free manner.

Formally, the determinant is the unique normalized alternating n-linear form satifying a
particular “universal property”.

To get there, we’ll explore the concept of a multilinear, or k-linear form.

This actually generalizes several familiar concepts:

A 1-linear form is just a scalar function X → K .

A 2-linear form is just a bilinear function X × X → K .

We’ll have to understand various types of multilinear forms: symmetric, skew-symmetric, and
alternating.

Before we can do this, we will cover two prerequesites:

an overview as to what the determinant means geometrically (for motivation)

a crash course on permutations.

Later on, we’ll see related concepts such as the trace and tensors.
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What is a determinant?

Definition (unofficial)

The determinant of T : Rn → Rn is the signed volume of T ([0, 1]n), the image of the unit
n-cube.
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Permutations

Definition

Let [n] := {1, . . . , n}. A permutation is a bijection π : [n]→ [n]. The set of all n!
permutations is the symmetric group, Sn.

Definition

The discriminant of variables x1, . . . , xn is

P(x1, . . . , xn) =
∏
i<j

(xi − xj ).

Permuting variables only changes the sign of the discriminant:

P
(
π(x1, . . . , xn)

)
=
∏
i<j

(xπ(i) − xπ(j)) = sgn(π)︸ ︷︷ ︸
±1

∏
i<j

(xi − xj ).

We call sgn(π) the sign of the permutation π.
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Transpositions

A transposition is a permutation τ ∈ Sn that swaps two entries and fixes the rest. That is,

τ(i) = j , τ(j) = i , τ(k) = k, if k 6= i , j .

We write this as (ij).

Proposition (HW)

(i) sgn(π1 ◦ π2) = sgn(π1) sgn(π2)

(ii) sgn(τ) = −1 for any transposition

(iii) every π ∈ Sn can be written as a composition of transpositions: π = τk ◦ · · · ◦ τ1

(iv) the parity of this decomposition is unique

(v) if π = τk ◦ · · · ◦ τ1, then sgn(π) = (−1)k .
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Multilinearity

Loosely speaking, linearity means we can pull apart sums and constants. We have seen:

1. Dual vectors: linear scalar functions X → K

2. Scalar products: bilinear functions U′ × X → K

n. Determinants: functions on n (row or column) vectors where we can break apart certain
sums and pull out constants.

These are all examples of multilinear functions.

The determinant is actually a property of a linear map, not a matrix. In this section, we will
define and study the determinant in this more abstract context.

The set of k-linear forms X × · · · × X → K is a vector space of dimension nk .

The following subclasses of k-linear forms are important subspaces:

symmetric

skew-symmetric

alternating
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k-linear forms

Definition

A k-linear form is a function f : X1 × · · · × Xk → K that is linear in each coordinate.

That is, if we fix k − 1 inputs, it is linear in the remaining input.

Unless otherwise stated, we will assume that X := X1 = · · · = Xk .

1. 1-linear forms are linear functions in X → K .

2. 2-linear forms are bilinear forms X × X → K .

3. A 3-linear form is a function X × X × X → K .
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The vector space of multilinear forms

Proposition

Let dimX = n. The set of k-linear forms X ×· · ·×X → K is a vector space of dimension nk .
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Symmetric and skew-symmetric multilinear forms

Let f : X × · · · × X → K be a k-linear form.

For any permutation π ∈ Sk , define the k-linear form πf by

(πf )(x1, . . . , xk ) = f
(
xπ1 , . . . , xπk

)
.

Definition

A k-linear form is:

1. symmetric if πf = f for every permutation π ∈ Sk

2. skew-symmetric if τ f = −f for every transposition τ ∈ Sk .
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Symmetric, skew-symmetric, and alternating forms

Recall that a k-linear form f : X × · · · × X → K is:

symmetric if πf = f for all π ∈ Sk ,

skew-symmetric if τ f = −f for all transpositions τ ∈ Sk .

Definition

A k-linear form is alternating if f (x1, . . . , xk ) = 0 whenever xi = xj (i 6= j).

It is easy to show that the set of alternating (respectively, symmetric or skew-symmetric)
k-linear forms is a subspace of T k (X ′).
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Alternating vs. skew-symmetric

Proposition 3.1

Every alternating form is skew-symmetric.

Corollary 3.2

If 1 + 1 6= 0, then every skew-symmetric form is alternating.
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Alternating forms and linear dependence

Proposition 3.3

If f is alternating and y1, . . . , yk is linearly dependent, then f (y1, . . . , yk ) = 0.
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Alternating forms and linear independence

Proposition 3.4

If f is a nonzero alternating n-linear form and e1, . . . , en a basis, then f (e1, . . . , en) 6= 0.

Corollary 3.5

Any two alternating n-linear forms are linearly dependent.

M. Macauley (Clemson) Section 3: Multilinear forms Math 8530, Advanced Linear Algebra 13 / 32

mailto:macaule@clemson.edu


Symmetric, skew-symmetric, and alternating forms

Throughout, dimX = n <∞. Recall that a k-linear form f : X × · · · × X → K is:

symmetric if πf = f for all π ∈ Sk

skew-symmetric if τ f = −f for all transpositions τ ∈ Sk

alternating if f (x1, . . . , xk ) = 0 whenever xi = xj (i 6= j).

All of these are subspaces of T k (X ′), the space of k-linear forms. What are their dimensions?

Goal

Show that the subspace of alternating n-linear forms is 1-dimensional, by verifying

any two alternating n-linear forms are linearly dependent (see previous lecture)

there is a non-zero alternating n-linear form.

The determinant of T : Rn → Rn is the unique alternating n-linear form satisfying
T (e1, . . . , en) = 1.

But we’d still like a definition that doesn’t refer to the choice of basis. . .
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The dimension of the subspace of alternating n-linear forms is ≥ 1

Proposition 3.5

There is a nonzero alternating n-linear form.
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Determinants, at last

Let T : X → X be linear. For an alternating n-linear f , define a new alternating n-linear form

T̄ f : X n −→ K , (T̄ f )(x1, . . . , xn) = f (Tx1, . . . ,Txn).

That is, T induces a map T̄ on the (1-dimensional) space of alternating n-linear forms:

f 7−→ T̄ f .

But any linear map on a 1-dimensional space is just scalar multiplication, x 7→ λx . Therefore,

T̄ : f 7−→ λf .

The scalar λ is called the determinant of T . It satisfies the following.

Universal property of the determinant

Given a linear map T : X → X , there exists a unique scalar λ such that for every alternating
n-linear form f ,

f (Tx1, . . . ,Txn) = λf (x1, . . . , xn).

X n X n

K K

T×···×T

f f

λ
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A few basic properties of determinants

If Tx = cx , then

(T̄ f )(x1, . . . , xn) = f (Tx1, . . . ,Txn) = f (cx1, . . . , cxn) = cnf (x1, . . . , xn).

Thus, detT = cn.

It follows that det 0 = 0 and det(Id) = 1.

Proposition 3.6

For any two linear maps A,B : X → X ,

det(AB) = (detA)(detB).

Corollary 3.7

If A : X → X is invertible, then detA−1 = (detA)−1 6= 0.
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The determinant of a 2 × 2 matrix

The determinant of an n × n matrix can be thought of as an alternating n-linear function of
its column vectors.

Let’s use bilinearity to find a formula for the determinant of A =

[
a11 a12

a21 a22

]
.
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The determinant of a 3 × 3 matrix

Let’s now apply this to finding the determinant of A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

.
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The determinant of an n × n matrix

Proposition 3.8

The determinant of an n × n matrix A = (aij ) is

detA =
∑
π∈Sn

a1,π(1)a2,π(2) · · · an,π(n),

and by symmetry, detA = detAT .
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The trace of a matrix

Definition

The trace of an n × n matrix is tr A =
n∑

i=1
aii .

Proposition 3.9

(a) Trace is linear: tr(kA) = k(tr A) and tr(A + B) = tr A + tr B.

(b) Trace is “commutative”: tr(AB) = tr(BA).

(c) Similar matrices have the same determinant and trace.
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Minors and cofactors

Lemma 3.10

Let A = [c1, . . . , cn] be an n × n matrix, and define B by adding kci to the jth column, for
i 6= j . Then detA = detB.

Definition

Let A be an n × n matrix, and let Aij be the (n − 1)× (n − 1) matrix formed by removing

the ith row and jth column.

The (i , j) minor of A is Mij := detAij .

The (i , j) cofactor of A is Cij := (−1)i+j detAij .

Lemma 3.11

Let A be an n × n matrix with first column e1, i.e., A =

[
1 −
0 A11

]
. Then detA = C11.

Corollary 3.12

Let A be a matrix whose jth column is ei . Then

detA = Cij .
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Laplace expansion

Recall: If the jth column of A is ei , then detA = Cij .

Theorem (Laplace expansion)

The determinant of A is

detA =
n∑

i=1

aijCij ,

for any fixed j = 1, . . . , n.
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Systems of equations

Consider an invertible matrix, written as an n-tuple of its column vectors:

A = (a1, . . . , an) = (Ae1, . . . ,Aen).

The system of equations Ax = u, with x =
n∑

j=1
xjej can be written

n∑
j=1

xjaj = u.

For each k, define the matrix

Ak = (a1, . . . , ak−1, u, ak+1, . . . , an),

and let’s compute its determinant.
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A formula for A−1

Theorem (Cramer’s rule)

The solution to the system of equations Ax = u, with x =
n∑

j=1
xjej is

xk =
1

detA

n∑
i=1

Cikui .

Theorem 3.13

If A is invertible, then the (i , j)-entry of its inverse A−1 is

(A−1)ij =
Cji

detA
.
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The idea behind tensor products

Consider two vector spaces U,V over K , and say dimU = n and dimV = m. Then

U ∼=
{
an−1x

n−1 + · · ·+ a1x + a0 | ai ∈ K
}
, V ∼=

{
bm−1y

m−1 + · · ·+b1x +b0 | bi ∈ K
}
.

The direct product U × V has basis{
(xn−1, 0), . . . , (x , 0), (1, 0)

}
∪
{

(0, ym−1), . . . , (0, y), (0, 1)
}
.

An arbitrary element has the form(
an−1x

n−1 + · · ·+ a1x + a0, bm−1y
m−1 + · · ·+ b1y + b0

)
∈ U × V .

Notice that (3x i , y j ) 6= (x i , 3y j ) in U × V .

There is another way to “multiply” the vector spaces U and V together. It is easy to check
that the following is a vector space:

m−1∑
j=0

n−1∑
i=0

cijx
iy j | cij ∈ K

 .

This is the idea of the tensor product, denoted U ⊗ V .

Formalizing this is a bit delicate. For example, 3x i · y j = x i · (3y j ) = 3(x i · y j ).
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The tensor product in terms of bases

Though we are normally not allowed to “multiply” vectors, we can define it by inventing a
special symbol.

Denote the formal “product” of two vectors u ∈ U and v ∈ V as u ⊗ v .

Pick bases u1, . . . , un for U and v1, . . . , vm for V .

Definition

The tensor product of U and V is the vector space with basis {ui ⊗ vj}.

By definition, every element of U ⊗ V can be written uniquely as

m∑
j=1

n∑
i=1

cij (ui ⊗ vj ).

It is immediate that dim(U ⊗ V ) = (dimU)(dimV ).

Remark

Not every multivariate polynomial in x and y factors as a product p(x)q(y).

Not every element in U ⊗ V can be written as u ⊗ v – called a pure tensor.
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A basis-free construction of the tensor product

Given vector spaces U and V , let FU×V be the vector space with basis U × V :

FU×V =
{∑

cuv eu,v | u ∈ U, v ∈ V
}
.

For all u, u′ ∈ U and v , v ′ ∈ V , we “need” the following to hold:

eu+u′,v = eu,v + eu′,v eu,v+v′ = eu,v + eu,v′ ecu,v = ceu,v eu,cv = ceu,v .

Consider the set of “null sums” from FU×V :

S =

[ ⋃
u,u′∈U
v∈V

eu+u′,v − eu,v − eu′,v

]
∪
[ ⋃

u∈U
v,v′∈V

eu,v+v′ − eu,v − eu,v′

]

∪
[ ⋃
u∈U,v∈V

c∈K

ecu,v − ceu,v

]
∪
[ ⋃
u∈U,v∈V

c∈K

eu,cv − ceu,v

]
.

Let Nq = Span(S). Denote the equivalence class of eu,v mod Nq as u ⊗ v .

Definition

The tensor product of U and V is the quotient space U ⊗ V := FU×V /Nq .
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Why this basis-free construction works

Let W be a vector space with basis
{
wij | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
. Define the linear map

α : W −→ U ⊗ V , α : wij 7−→ ui ⊗ vj .

We’d like to define the (inverse) map β : U ⊗ V →W , but to do so, we need a basis for
U ⊗ V . What we can do is define a map

β̃ : FU×V −→W , β̃ : eΣai ui ,Σbj vj 7−→
∑
i,j

aibjwij .

Remark (exercise)

The nullspace of β̃ contains the nullspace of q.

Since Nq ⊆ Nβ̃ , the map β̃ factors through FU×V /Nq := U ⊗ V :

FU×V
β̃ //

q
%%

W

FU×V /Nq

β

;; eΣai ui ,Σbj vj
� β̃ //

�

q
''

∑
aibjwij

∑
aiui ⊗

∑
bjvj

0 β

77

The maps α and β are inverses because α ◦ β = IdU⊗V and β ◦ α = IdW .
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Universal property of the tensor product

Let τ : U × V → U ⊗ V be the map (u, v) 7→ u ⊗ v .

The following says that every bilinear map from U × V can be “factored through” U ⊗ V .

Theorem 3.14

For every bilinear β : U×V → X , there is a unique linear L : U⊗V → X such that β = L◦ τ .

U × V
β //

τ
$$

X

U ⊗ V

L

<<

The universal property can provide us with alternate proofs of some basic results, such as:

(i) {ui ⊗ vj} is linearly independent

(ii) U ⊗ V ∼= V ⊗ U

(iii) (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

(iv) (U × V )⊗W ∼= (U ⊗W )× (V ⊗W ).
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Tensors as linear maps

Proposition 3.15

There is a natural isomorphism

U ⊗ V −→ Hom(U′,V ), u ⊗ v 7−→
(
` 7→ (`, u)v

)
.

The following shows the linear map `
Eij7−→ (`, ui )vj in matrix form:

[
c1 · · · ci · · · cn

]︸ ︷︷ ︸
`=

∑
ci `i∈U′



0 0 · · · 0
0 0 · · · 0
... 1

...
...

...
. . .

...
0 0 · · · 0


︸ ︷︷ ︸

Eij :=vTj ui

=
[
0 · · · ci · · · 0

]︸ ︷︷ ︸
ci vj∈V

More generally:
u1

u2

...
un

⊗
v1

...
vm

 = vuT =

v1

...
vm

 [u1 u2 · · · un
]

=


v1u1 v1u2 · · · v1un
v2u1 v2u2 · · · v2un

...
...

. . .
...

vmu1 vmu2 · · · vmun


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Tensors as a way to extend an R-vector space to a C-vector space

Let X be an R-vector space with basis {x1, . . . , xn}.

Note that C is a 2-dimensional R-vector space, with basis {1, i}.

Suppose A : X → X is a linear map with eigenvalues λ1,2 = ±i .

If v is an eigenvector v for λ = i , then v 6∈ X . But v should live in some “extension” of X .

In this bigger vector space, we want to have vectors like

zv , z ∈ C, v ∈ X .

What we really want is C⊗ X , which has basis{
1⊗ x1, . . . , 1⊗ xn, i ⊗ x1, . . . , i ⊗ xn

}
“=”

{
x1, . . . , xn, ix1, . . . , ixn

}
.

Notice how the associativity that we would expect comes for free with the tensor product,
and compare it to the other examples from this lecture:

(3i)v = i(3v), (3x i )y j = x i (3y j ), (3u)vT = u(3vT ), 3u ⊗ v = u ⊗ 3v .
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