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Overview

One of the goals of this section is to understand the concept of the determinant in a
basis-free manner.

Formally, the determinant is the unique normalized alternating n-linear form satifying a
particular “universal property” .

To get there, we'll explore the concept of a multilinear, or k-linear form.
This actually generalizes several familiar concepts:
m A 1-linear form is just a scalar function X — K.

m A 2-linear form is just a bilinear function X x X — K.

We'll have to understand various types of multilinear forms: symmetric, skew-symmetric, and
alternating.

Before we can do this, we will cover two prerequesites:

m an overview as to what the determinant means geometrically (for motivation)

m a crash course on permutations.

Later on, we'll see related concepts such as the trace and tensors.
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What is a determinant?

Definition (unofficial)

The determinant of T: R” — R" is the signed volume of T([0,1]"), the image of the unit
n-cube.

M. Macauley (Clemson) Section 3: Multilinear forms


mailto:macaule@clemson.edu

Permutations

Definition
Let [n] :={1,...,n}. A permutation is a bijection 7: [n] — [n]. The set of all n!
permutations is the symmetric group, Sp.

Definition
The discriminant of variables xi, ..., xp is

P(x1,...,%n) = H(x,- — Xj)-

i<j

Permuting variables only changes the sign of the discriminant:

P(TI'(Xl, ... ,x,,)) = H(x,,(,-) - x,r(,-)) = sgn(m) H(x,- — Xj).
i<j e} i<j

We call sgn() the sign of the permutation 7.
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Transpositions

A transposition is a permutation 7 € S, that swaps two entries and fixes the rest. That is,
T(i)y=j, 7()=1i, T(k) =k, if k#1,j.
We write this as (if).
Proposition (HW)
(i) sgn(m1 o m) = sgn(m1)sgn(m)
(ii) sgn(7) = —1 for any transposition
(iii) every m € S, can be written as a composition of transpositions: m =7, 0--- 0T

(iv) the parity of this decomposition is unique

(v) if T =7k 0--- 07, then sgn(rw) = (—=1)k.
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Multilinearity
Loosely speaking, linearity means we can pull apart sums and constants. We have seen:
1. Dual vectors: linear scalar functions X — K

2. Scalar products: bilinear functions U’ x X — K

n. Determinants: functions on n (row or column) vectors where we can break apart certain
sums and pull out constants.

These are all examples of multilinear functions.

The determinant is actually a property of a linear map, not a matrix. In this section, we will
define and study the determinant in this more abstract context.

The set of k-linear forms X x --- x X — K is a vector space of dimension n¥.

The following subclasses of k-linear forms are important subspaces:
m symmetric
m skew-symmetric

m alternating
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k-linear forms

Definition
A k-linear form is a function f: X1 X --- X X — K that is linear in each coordinate.

That is, if we fix kK — 1 inputs, it is linear in the remaining input.

Unless otherwise stated, we will assume that X := X; = --- = X.

1. 1-linear forms are linear functions in X — K.
2. 2-linear forms are bilinear forms X x X — K.

3. A 3-linear form is a function X x X x X — K.
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The vector space of multilinear forms

Let dim X = n. The set of k-linear forms X x --- x X — K is a vector space of dimension n

Proposition J
k
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Symmetric and skew-symmetric multilinear forms
Let f: X X --- X X — K be a k-linear form.
For any permutation 7 € Sy, define the k-linear form =f by
(7Tf)(X1, s 7Xk) = f(X7r17 oo 7X7rk)~
Definition

A k-linear form is:

1. symmetric if wf = f for every permutation m € Sy

2. skew-symmetric if 7f = —f for every transposition 7 € Sy.
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Symmetric, skew-symmetric, and alternating forms
Recall that a k-linear form f: X x .- x X — K is:

m symmetric if 7f = f for all m € Sy,

m skew-symmetric if 7f = —f for all transpositions 7 € Si.
Definition
A k-linear form is alternating if f(x1,...,xx) = 0 whenever x; = x; (i # j). J

It is easy to show that the set of alternating (respectively, symmetric or skew-symmetric)
k-linear forms is a subspace of T*(X’).
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Alternating vs. skew-symmetric

Proposition 3.1

Every alternating form is skew-symmetric.

Corollary 3.2

If 141 # 0, then every skew-symmetric form is alternating.
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Alternating forms and linear dependence

Proposition 3.3
If f is alternating and y1, ..., yk is linearly dependent, then f(y1,...,yx) = 0. J
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Alternating forms and linear independence

Proposition 3.4

If f is a nonzero alternating n-linear form and ey, ..., e, a basis, then f(er,...,e,) # 0.

Corollary 3.5

Any two alternating n-linear forms are linearly dependent.
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Symmetric, skew-symmetric, and alternating forms
Throughout, dim X = n < co. Recall that a k-linear form f: X x --- x X = K is:

m symmetric if 7f = f for all m € Sj

m skew-symmetric if 7f = —f for all transpositions 7 € Sy

m alternating if f(xi,...,xc) = 0 whenever x; = x; (i # J).
All of these are subspaces of 7*(X’), the space of k-linear forms. What are their dimensions?
Goal
Show that the subspace of alternating n-linear forms is 1-dimensional, by verifying

m any two alternating n-linear forms are linearly dependent (see previous lecture)

m there is a non-zero alternating n-linear form.

The determinant of T: R” — R" is the unique alternating n-linear form satisfying
T(e1,...,en)=1.

But we'd still like a definition that doesn’t refer to the choice of basis. . .
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The dimension of the subspace of alternating n-linear forms is > 1

There is a nonzero alternating n-linear form.

Proposition 3.5 J
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Determinants, at last
Let T: X — X be linear. For an alternating n-linear f, define a new alternating n-linear form
T X" — K, (TA(x1,...,xn) = F(Txa,..., Txn).
That is, T induces a map T on the (1-dimensional) space of alternating n-linear forms:
f— TF.
But any linear map on a 1-dimensional space is just scalar multiplication, x — Ax. Therefore,
T:f— M.
The scalar A is called the determinant of T. It satisfies the following.

Universal property of the determinant

Given a linear map T: X — X, there exists a unique scalar A such that for every alternating
n-linear form f,

Xn TX--XT Xn

F(Txt,..., Txn) = A(x1,. .., Xn)- f f

4
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A few basic properties of determinants
If Tx = cx, then
(TH(x1,...,xn) = F(Txt,..., Txn) = fexi,...,cxn) = c"F(x1,. .., Xn)-
Thus, det T = c".
It follows that det0 = 0 and det(ld) = 1.
Proposition 3.6
For any two linear maps A, B: X — X,

det(AB) = (det A)(det B).

Corollary 3.7

If A: X — X is invertible, then det A=! = (det A)~1 # 0.
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The determinant of a 2 x 2 matrix

The determinant of an n X n matrix can be thought of as an alternating n-linear function of
its column vectors.

a1 a12
a2 a2

Let's use bilinearity to find a formula for the determinant of A = |:
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The determinant of a 3 x 3 matrix

ail a2 a3
Let's now apply this to finding the determinant of A= |ax1 ax» a3
a3 a3 as3
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The determinant of an n X n matrix

Proposition 3.8

The determinant of an n X n matrix A = (aj;) is

detA= > a1 r(1)32,x(2) """ 3n,x(n)s
TESy

and by symmetry, det A = det A7
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The trace of a matrix
Definition

n
The trace of an n X n matrix is trA = > aj;.
i=1

Proposition 3.9
(a) Trace is linear: tr(kA) = k(tr A) and tr(A+ B) =tr A+ tr B.
(b) Trace is “commutative”: tr(AB) = tr(BA).

(c) Similar matrices have the same determinant and trace.
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Minors and cofactors

Lemma 3.10

Let A= [c1,...,cn] be an n X n matrix, and define B by adding kc; to the J column, for
i # j. Then det A = det B.

Definition
Let A be an n x n matrix, and let A; be the (n — 1) x (n — 1) matrix formed by removing
the i** row and j** column.

m The (i,j) minor of Ais Mj; := det Aj;.

m The (i, ) cofactor of Ais Cj := (—1)*/ det Aj.

Lemma 3.11

Let A be an n X n matrix with first column e, i.e., A= |:(1) All} Then det A = Cy31.

Corollary 3.12

Let A be a matrix whose jtP column is e;. Then

det A = CU
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Laplace expansion

Recall: If the j*1 column of A is e;, then det A = Cj.

Theorem (Laplace expansion)

The determinant of A is
n
det A = Z ajj C,'j,
i=1

for any fixed j=1,...,n.
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Systems of equations
Consider an invertible matrix, written as an n-tuple of its column vectors:

A=(a1,...,an) = (Ae1,...,Aen).

n
The system of equations Ax = u, with x = _z:lxj-ej can be written
j=

n
E Xjaj = u.
=t

For each k, define the matrix
Ap = (317 cees k=1, Uy Ak 1y -y an)7

and let's compute its determinant.
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A formula for A~1

Theorem (Cramer's rule)

n
The solution to the system of equations Ax = u, with x = >~ x;e; is
J=1
e
XK = ik Ui -
det A e

Theorem 3.13

If Ais invertible, then the (i, j)-entry of its inverse A= is
Gji

det A’

(A1) =
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The idea behind tensor products
Consider two vector spaces U, V over K, and say dim U = n and dim V = m. Then
U {a,,,lx"_l +--4aixtao|a€ K}, = {bmfly"’_lJr---erlXero | b; € K}.
The direct product U x V has basis
{(x"71,0), 1, (x,0), (1,0} U {(0,y™ 1), ..., (0,), (0, 1)}
An arbitrary element has the form
(an—1X"71 + -4 aix 4 ag, bp_1y™ 4 4 by + by) € U x V.
Notice that (3x',y/) # (x/,3y/) in U x V.

There is another way to “multiply” the vector spaces U and V together. It is easy to check
that the following is a vector space:

m—1n—1 o
Z Zcijxlyj | cjj € K
j=0 i=0

This is the idea of the tensor product, denoted U ® V.

Formalizing this is a bit delicate. For example, 3x' - yJ = x/ - (3y/) = 3(x' - y¥).
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The tensor product in terms of bases

Though we are normally not allowed to “multiply” vectors, we can define it by inventing a
special symbol.

Denote the formal “product” of two vectors u € U and v € V as u® v.

Pick bases u1,...,u, for U and vy, ..., vy, for V.
Definition
The tensor product of U and V is the vector space with basis {u; ® v;}. J

By definition, every element of U ® V can be written uniquely as

n

s

cij(ui ® vj).
1i=1

J
It is immediate that dim(U ® V) = (dim U)(dim V).
Remark

Not every multivariate polynomial in x and y factors as a product p(x)q(y).

Not every element in U ® V can be written as u ® v — called a pure tensor.
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A basis-free construction of the tensor product

Given vector spaces U and V/, let Fyx\ be the vector space with basis U X V:

FUXV:{ZCuveu,v | ue U, VEV}.

For all u,u’ € U and v,v' € V, we “need” the following to hold:

€utu’,v = €u,v + €u’ v €u,v+v/ = €u,v + €u,v/ €cu,v = Ceu,v

Consider the set of “null sums’ from Fyyy:

5:[ U eu_*_u/,vfeu,vfeu/,v}u{ U eu,v+v/

u,u’ €U uey
’
vEV v,v ev

— €

u,v eu,v’j|

U|: U €cu,v — Ceu,v:| U |: U €u,cv — Ceu,vj| .

uel,veV uel,veV
ceK ceK

Let Ny = Span(S). Denote the equivalence class of e,y mod Ny as u® v.

Definition

The tensor product of U and V is the quotient space U ® V := Fyxv/Ng.

€u,cv = Cey,v.
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Why this basis-free construction works
Let W be a vector space with basis {w,-j [1<i<n 1<j< m}. Define the linear map
aW—URV, a: wij — Ui Q V.

We'd like to define the (inverse) map 3: U® V — W, but to do so, we need a basis for
U ® V. What we can do is define a map

B: Fuxy — W, B: €xau;, 5y > aibjw;.
ij
Remark (exercise)

The nullspace of 3 contains the nullspace of q.

Since Ng C N[;, the map 5’ factors through Fyxy/Ng = UQ V:

™

B

Fuxv w €5au;,5bjv; b > ajbjw;
-

7
- ~
e ~
-
\ ///3 \ _ B

v
Fuxv/Ng >oaiui ® 3objv;
The maps a and f3 are inverses because a o f = ldygy and Soa = Idy.
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Universal property of the tensor product

Let 7: UX V — U® V be the map (u,v) — u® v.

The following says that every bilinear map from U x V can be “factored through” U ® V.

Theorem 3.14

For every bilinear 8: U X V — X, there is a unique linear L: U® V — X such that 3 = Lor.

The universal property can provide us with alternate proofs of some basic results, such as:
(i) {ui ® v;} is linearly independent

(iHhueveveU

(i) (U V)eW2UR (Ve W)

(iv) (UxV)eW=2(UW)x(VeW).
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Tensors as linear maps

Proposition 3.15

There is a natural isomorphism

U® V — Hom(U', V), U v i— (Zr—}(é,u)v).

E::
The following shows the linear map ¢ +—% (¢, u;)v; in matrix form:
0 0 --- O
00 --- 0
[c1 cee G e c,,} : 1 . :[0 e G 0}
=S ctiev Do ciyeV
o o0 --- 0
| S —
E,-j::vau,-
More generally:
u viu viu
1 v v 1U1 1U2
u vauy Vol
® : :vuT: : [ul [7, B up| =
: Vo Vi : :
Un VmUl  VmU2
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Tensors as a way to extend an R-vector space to a C-vector space
Let X be an R-vector space with basis {x1,...,xn}.
Note that C is a 2-dimensional R-vector space, with basis {1, i}.
Suppose A: X — X is a linear map with eigenvalues \; » = +i.
If v is an eigenvector v for A = i, then v € X. But v should live in some “extension” of X.
In this bigger vector space, we want to have vectors like
zv, zeC, velX.
What we really want is C ® X, which has basis
{1®x1,...,1®x,,,i®x1,...,i®x,,} H=" {xl,...,x,,,ixl,...,ixn}.

Notice how the associativity that we would expect comes for free with the tensor product,
and compare it to the other examples from this lecture:

(3i)v =i(3v), (3x")y! = xI(3y7), BuvT =u@3vT), 3uQv=u®3v.
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