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Basic concepts, and relation to eigenvalues

Definition

A self-adjoint map M : X ! X is positive-definite (or positive) if

(x ,Mx) > 0, for all x 6= 0,

and positive semi-definite (or nonnegative) if

(x ,Mx) ≥ 0, for all x 6= 0,

We denote these as M > 0 and M ≥ 0, respectively.

Proposition 7.1

A self-adjoint map M : X ! X is

(i) positive if and only if all eigenvalues of M are positive,

(ii) non-negative if and only if all eigenvalues of M are nonnegative.

We can define what it means for M to be negative, or non-positive, analogously.

A matrix that is none of these is said to be indefinite.
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Basic properties of positive maps

Proposition 7.2

Let X be an inner product space, and M,N,Q ∈ Hom(X ,X ).

(i) If M,N > 0, then M + N > 0 and aM > 0 for a > 0.

(ii) If M > 0 and Q invertible, then Q∗MQ > 0.

(iii) Every positive map has a unique positive square root.
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The topology of positive maps

In an inner product space, the ball of radius r > 0 centered at x ∈ X is

Br (x) =
{
y ∈ X : ||x − y || < r

}
.

Let U ⊆ X be a subset. Then

a point u ∈ U is interior if there is some ε > 0 for which Bε(u) ⊆ U,

the set U is open if every u ∈ U is interior,

its closure consists of U and its limit points.

Proposition 7.3

Let X be an inner product space, and consider the vector space of self-adjoint maps of X .

(i) The subset of positive maps is open.

(ii) The closure of this set are the non-negative maps.
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The matrix ATA

Consider an n ×m matrix A over R, where

A =
[
x1 · · · xm

]
.

The m ×m matrix ATA is self-adjoint:

ATA =


xT1 x1 xT1 x2 · · · xT1 xm
xT2 x1 xT2 x2 · · · xT2 xm

...
...

. . .
...

xTm x1 xTm x2 · · · xTm xm

 .

Note that A : Rm ! Rn and ATA : Rm ! Rm. We’ve already seen that:

1. rankA = rankATA and nullity A = nullity ATA (in fact, NA = NATA),

2. ATA ≥ 0, and ATA > 0 if x1, . . . , xm are linearly independent,

3. If NA = 0, then the projection matrix onto Span(x1, . . . , xm) is A(ATA)−1AT .

Later, we’ll diagonalize ATA to get the celebrated singular value decomposition of A.
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Gram matrices

Now, we’ll generalize the construction of ATA, the “matrix of dot products.”

We’ll see that every positive matrix is a “matrix of inner products.”

Definition

Let x1, . . . , xm ∈ X , with inner product ( , ). The Gram matrix of these vectors is

G = (Gij ), where Gi,j = (xi , xj ).

Notice that G = A∗A, where A =
[
x1 · · · xm

]
.

Theorem 7.6

1. Every Gram matrix is nonnegative.

2. The Gram matrix of a set of linearly independent vectors is positive.

3. Every positive matrix is a Gram matrix.

M. Macauley (Clemson) Section 7: Positive linear maps Math 8530, Advanced Linear Algebra 6 / 19

mailto:macaule@clemson.edu


Other examples of Gram matrices

1. Let X =
{
f : [0, 1]! R

}
, where (f , g) =

∫ 1

0
f (t)g(t) dt. If

f1 = 1, f2 = t, . . . , fm = tm−1,

then the Gram matrix is G = (Gij ), where

Gij =
1

i + j − 1
.

2. Consider X =
{
f : [0, 2π]! C

}
and a “weighting function” w : [0, 2π]! R+, define

(f , g) =

∫ 2π

0
f (θ)g(θ)w(θ) dθ.

If fj = e ijθ, for j = −n, . . . , n, then the (2n + 1)× (2n + 1) Gram matrix is
G = (Gkj ) = (ck−j ), where

cω =

∫ 2π

0
w(θ)e−iωθdθ.
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New inner products from old

Let X be a vector space with inner product (· , ·).

A positive map M > 0 defines a nonstandard inner product 〈· , ·〉, where

〈x , y〉 := (x ,My).

Lemma 7.7 (HW)

If H,M : X ! X are self-adjoint and M > 0, then M−1H is self-adjoint with respect to the
inner product 〈x , y〉 = (x ,My).

Definition

If H,M : X ! X are self-adjoint and M > 0, the generalized Rayleigh quotient is

RH,M(x) =
(x ,Hx)

(x ,Mx)
=

(x ,MM−1Hx)

(x ,Mx)
=
〈x ,M−1Hx〉
〈x , x〉

:= RM−1H〈x〉 w.r.t. 〈 , 〉.

Note that:

the ordinary Rayleigh quotient is simply RH = RH,I .

the generalized Rayleigh quotient is an ordinary Rayley quotient.
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The generalized Rayleigh quotient

Key remark

Results on the generalized Rayleigh quotient RH,M(x) follow from interpreting results of the
ordinary Rayleigh quotient to

RM−1H〈x〉 :=
〈x ,M−1Hx〉
〈x , x〉

=
(x ,Hx)

(x ,Mx)
= RH,M(x).

For example, the minimum value of the Rayleigh quotient is the smallest eigenvalue of H:

RH(v1) = λ1, where Hv1 = λ1v1.

The minimum value of the generalized Rayleigh quotient is the smallest eigenvalue of M−1H:

RH,M(v1) = RM−1H〈w1〉 = µ1, where M−1Hw1 = µ1w1.

Now, w.r.t. the inner product 〈 , 〉, let

X1 := Span(v1)⊥, and so X = X1 ⊕ Span(v1), dimX1 = n − 1.

The minimum value of the generalized Rayleigh quotient on X1 is

µ2 = min
||x||=1

{
RM−1H〈x〉 | 〈x , v1〉 = 0

}
= min
||x|||=1

{
RH,M(x) | (x ,Mv1) = 0

}
where M−1Hw2 = µ2w2, and µ2 is the 2nd smallest eigenvalue of M−1H.
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The min-max principle for the generalized Rayleigh quotient

Theorem 6.10 (recall)

Let H : X ! X be self-adjoint with eigenvalues λ1 ≤ · · · ≤ λn. Then

λk = min
dim S=k

{
max
x∈S\0

RH(x)

}
.

Proposition 7.8 (HW)

Let H,M : X ! X be self-adjoint and M > 0.

1. Show that there exists a basis v1, . . . , vn of X where each vi satisfies

Hvi = µiMvi (µi real), (vi ,Mvj ) =

{
1 i = j
0 i 6= j

2. Compute (vi ,Hvj ), and show that there is an invertible matrix U for which U∗MU = I
and U∗HU is diagonal.

3. Characterize the numbers µ1, . . . µn by a minimax principle.
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The Hadamard product of matrices

Let A = (aij ) and B = (bij ) be matrices of the same size. The Hadamard product of A and
B is defined as

A ◦ B := (aijbij ).

Schur’s product theorem

If A,B > 0, then so is A ◦ B.

M. Macauley (Clemson) Section 7: Positive linear maps Math 8530, Advanced Linear Algebra 11 / 19

mailto:macaule@clemson.edu


The idea of the polar decomposition

Every nonzero complex number z ∈ C has a unique polar form

z = re iθ = |z|e iθ, r ∈ R+, θ ∈ [0, 2π).

This can be thought of as decomposing z ∈ C into:

a rotation by θ,

a scaling by |z| = r =
√
z̄z.

This is simply the polar decomposition of a 1× 1 matrix.

Every linear map A ∈ Hom(X ,X ) can be decomposed as A = UP, where

U is unitary; i.e., an isometry of X ,

P ≥ 0; a scaling along an orthonormal axis u1, . . . , un.

It turns out that P =
√
A∗A := |A|, and so sometimes this is written A = U|A|.

In this lecture, we will derive the polar decomposition of a linear map

A : X −! U, dimX = m, dimU = n.

In the next lecture, we will derive the celebrated singular value decomposition (SVD).
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Singular values

Key properties (Propositions 7.2, 7.6)

A∗A ≥ 0;

Every P ≥ 0 has a unique nonnegative square root R :=
√
P, such that R2 = P.

This means that for some λ1, . . . , λm ≥ 0,

A∗A = W

λ
2
1

. . .

λ2
m

W ∗, and
√
A∗A = W

λ1

. . .

λm

W ∗.

Definition

The eigenvalues of λ1, . . . , λm of
√
A∗A are called the singular values of A.

Facts (that we’ve seen)

||Ax || =
∣∣∣∣√A∗Ax∣∣∣∣ for all x ∈ X .

A, A∗A, and
√
A∗A have the same nullspace.

A, A∗A, and
√
A∗A have the same rank.

M. Macauley (Clemson) Section 7: Positive linear maps Math 8530, Advanced Linear Algebra 13 / 19

mailto:macaule@clemson.edu


Polar decomposition of an invertible map

Theorem

Every linear map A : X ! X can be written as A = UP where P ≥ 0 and U is unitary. This
is called the (left) polar decomposition of A.

To construct the polar decomposition, suppose A = UP.

Since P ≥ 0, we can write P = QDQ∗,and so

P∗P = (QDQ∗)∗(QDQ∗) = (QD∗Q∗)QDQ∗ = QD2Q∗ = P2.

Now, notice that
A∗A = (UP)∗(UP) = P∗U∗UP = P∗P = P2.

Therefore, P =
√
A∗A.

If A is invertible, then U = AP−1 = A
√
A∗A

−1
is uniquely determined.

In this case,

A = UP =
(
A
√
A∗A

−1)√
A∗A.

If A is not invertible, then U still exists, but is not unique.
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Polar decomposition of a general linear map

Theorem

Every linear map A : X ! X can be written as A = UP where P ≥ 0 and U is unitary. This
is called the polar decomposition of A.

Suppose the eigenvalues of
√
A∗A are

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λm = 0,

and pick a set x1, . . . , xm of orthonormal eigenvectors. Then

1

λ1
Ax1, . . . ,

1

λr
Axr , xr+1, . . . , xm

is orthonormal. The polar decomposition is A = UP where P =
√
A∗A and

U =

 | | | |
1
λ1

Ax1 · · · 1
λr

Axr xr+1 · · · xm
| | | |


 — xH1 —

...
— xHm —

 .
Remark

If A : X ! X and r := detP = | detA|, then

detA = detU detP = e iθ · r .
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Singular value decomposition

Need to do. . .
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Partially ordered sets

Recall that a partial order on a set X is a relation ≤ that is:

(i) reflexive: x ≤ x

(ii) anti-symmetric: x ≤ y and y ≤ x ⇒ x = y

(iii) transitive: x ≤ y ≤ z ⇒ x ≤ z.

We say that x < y if x ≤ y and x 6= y . The pair (X ,≤) is a partially ordered set (poset).

Alternatively, we can define a partial order by a relation < that is

(i) reflexive: x � x

(ii) anti-symmetric: x < y ⇒ y 6< x

(iii) transitive: x < y < z ⇒ x < z.

Definition

Put a following partial order on the set of self-adjoint maps:

M < N iff N −M > 0, M ≤ N iff N −M ≥ 0.
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Basic properties of the poset of positive maps

The following easy facts all hold for positive numbers:

(i) If m1 < n1 and m2 < n2, then m1 + m2 < n1 + n2.

(ii) If ` < m < n, then ` < n.

(iii) If m < n and a > 0, then am < an

(iv) If 0 < m < n, then 1/m > 1/n > 0.

Proposition 7.9

The following all hold for linear maps on X :

(i) If M1 < N1 and M2 < N2, then M1 + M2 < N1 + N2.

(ii) If L < M < N, then L < N.

(iii) Given maps M < N and a scalar a > 0, we have aM < aN.

(iv) If 0 < M < N, then M−1 > N−1 > 0.
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The symmetrized product

Definition

If A,B : X ! X are self-adjoint, their symmetrized product is

S = AB + BA.

Proposition 7.10

Let A,B be self-adjoint. If A > 0 and AB + BA > 0, then B > 0.
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