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Basic concepts, and relation to eigenvalues
Definition
A self-adjoint map M: X — X is positive-definite (or positive) if
(x, Mx) > 0, for all x # 0,
and positive semi-definite (or nonnegative) if
(x, Mx) > 0, for all x # 0,

We denote these as M > 0 and M > 0, respectively.

Proposition 7.1
A self-adjoint map M: X — X is
(i) positive if and only if all eigenvalues of M are positive,

(if) non-negative if and only if all eigenvalues of M are nonnegative.

We can define what it means for M to be negative, or non-positive, analogously.

A matrix that is none of these is said to be indefinite.
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Basic properties of positive maps

Proposition 7.2

Let X be an inner product space, and M, N, Q@ € Hom(X, X).
(i) If M;N > 0, then M + N > 0 and aM > 0 for a > 0.
(if) If M > 0 and Q invertible, then Q*MQ > 0.

(iii) Every positive map has a unique positive square root.
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The topology of positive maps
In an inner product space, the ball of radius r > 0 centered at x € X is

B:(x)={yeX:|x—yl|l <r}
Let U C X be a subset. Then

m a point u € U is interior if there is some € > 0 for which Bc(u) C U,
m the set U is open if every u € U is interior,

m its closure consists of U and its limit points.

Proposition 7.3

Let X be an inner product space, and consider the vector space of self-adjoint maps of X.

(i) The subset of positive maps is open.

(if) The closure of this set are the non-negative maps.
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The matrix AT A

Consider an n X m matrix A over R, where
A= [xl xm],

The m x m matrix AT A is self-adjoint:

xlT X1 xlT Xy e xlT Xm
T T T
- Xy X1 Xy Xa Xy Xm
A'A=
X,;’; X1 X,Z,— Xy v x,;f Xm

Note that A: R™ — R” and ATA: R™ — R™. We've already seen that:

1. rank A=rank ATA and nullity A= nullity ATA (in fact, Na = Ny7,),
2. ATA>0,and ATA > 0if xq,...,xm are linearly independent,

3. If Ny = 0, then the projection matrix onto Span(xi, ..., xm) is A(ATA)~1AT,

Later, we'll diagonalize AT A to get the celebrated singular value decomposition of A.
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Gram matrices

Now, we'll generalize the construction of AT A, the “matrix of dot products.”

We'll see that every positive matrix is a “matrix of inner products.”

Definition

Let x1,...,xm € X, with inner product (, ). The Gram matrix of these vectors is
G = (GU)7 where G,"j = (X,‘,XJ').

Notice that G = A*A, where A = [xl xm].

Theorem 7.6

1. Every Gram matrix is nonnegative.

2. The Gram matrix of a set of linearly independent vectors is positive.

3. Every positive matrix is a Gram matrix.

M. Macauley (Clemson) Section 7: Positive linear maps Math 8530, Advanced Linear Algebra 6 /19


mailto:macaule@clemson.edu

Other examples of Gram matrices

1. Let X = {f: [0,1] — R}, where (f,g) = /1 f(t)g(t)dt. If
0

i=1 h=t ..., fa=t""1
then the Gram matrix is G = (Gj;), where

1
i+j—1

i =

2. Consider X = {f: [0,27] — C} and a “weighting function” w: [0,27] — R*, define

27 -
(f.g) = /O £(0)g(8)w(0) db.

If f; = ei? for j = —n,...,n, then the (2n+ 1) x (2n + 1) Gram matrix is
G = (ij) = (Ck_j), where

27 .
Co = / w(0)e=“%do.
0
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New inner products from old
Let X be a vector space with inner product (-, -).
A positive map M > 0 defines a nonstandard inner product (-, ), where
(%, y) = (x, My).

Lemma 7.7 (HW)

If H,M: X — X are self-adjoint and M > 0, then M—1H is self-adjoint with respect to the
inner product (x, y) = (x, My).

Definition
If HM: X — X are self-adjoint and M > 0, the generalized Rayleigh quotient is

(x,Hx) _ (x, MM~1Hx)  (x, M~!Hx)
(x, Mx) — (x, Mx) - (x, x)

Ry m(x) = = Ry—1y{x) w.rt. (,).

Note that:
m the ordinary Rayleigh quotient is simply Ry = Ry j.
m the generalized Rayleigh quotient is an ordinary Rayley quotient.
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The generalized Rayleigh quotient

Key remark
Results on the generalized Rayleigh quotient Ry p(x) follow from interpreting results of the
ordinary Rayleigh quotient to

(x, M~1Hx) _ (x, Hx)

(x, x) - (x, Mx) = Rum()-

Ry—1y(x) ==

For example, the minimum value of the Rayleigh quotient is the smallest eigenvalue of H:
Ry(vi) = A, where Hv; = A\1vq.
The minimum value of the generalized Rayleigh quotient is the smallest eigenvalue of M—1H:
Ru,m(vi) = Ry—1y(w1) = p1, where M~ 1Hw, = Hiwy.
Now, w.r.t. the inner product (,), let
Xi := Span(v1)*, and so X = X1 @ Span(v1), dimX; =n—1.
The minimum value of the generalized Rayleigh quotient on Xj is

2 = HXH 1{I'R’M 1) | (5, v1) =0} = Hnwln {Ru,m(x) | (x, Mvy) = 0}

where M~ 1Hw, = paws, and pp is the 2nd smallest eigenvalue of M~—1H.
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The min-max principle for the generalized Rayleigh quotient

Theorem 6.10 (recall)
Let H: X — X be self-adjoint with eigenvalues A\; < --- < A,. Then

M= dim Sk {xnqui(o RH(X)} ’

Proposition 7.8 (HW)

Let H,M: X — X be self-adjoint and M > 0.
1. Show that there exists a basis vy, ..., v, of X where each v; satisfies

Hv; = piMv;  (p; real), (vi, Mvj) = { é :;j

2. Compute (vj, Hv;), and show that there is an invertible matrix U for which U*MU = |

and U*HU is diagonal.

3. Characterize the numbers p1, ... un by a minimax principle.
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The Hadamard product of matrices

Let A = (aj) and B = (bj;) be matrices of the same size. The Hadamard product of A and
B is defined as
Ao B = (aubu)

Schur's product theorem
If A,B >0, then so is Ao B. J
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The idea of the polar decomposition
Every nonzero complex number z € C has a unique polar form
z=re' = |z|e?, re R, 6¢€o,2n).
This can be thought of as decomposing z € C into:

m a rotation by 6,

m ascaling by |z| =r =+/Zz.
This is simply the polar decomposition of a 1 x 1 matrix.

Every linear map A € Hom(X, X) can be decomposed as A = UP, where
m U is unitary; i.e., an isometry of X,

m P > 0; a scaling along an orthonormal axis uy, ..., up.
It turns out that P = /A*A := |A|, and so sometimes this is written A = U|A|.
In this lecture, we will derive the polar decomposition of a linear map
A X — U, dmX =m, dimU = n.

In the next lecture, we will derive the celebrated singular value decomposition (SVD).
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Singular values

Key properties (Propositions 7.2, 7.6)
m A*A > 0;
m Every P > 0 has a unique nonnegative square root R := +/P, such that R2 = P.

This means that for some A1,...,Am >0,
A2 A
A*A=W w*, and VA*A =W w*.
2, Am
Definition

The eigenvalues of A1, ..., A\m of VVA*A are called the singular values of A.

Facts (that we've seen)

m ||Ax|| = ||VA*Ax|| for all x € X.

m A A*A, and VA*A have the same nullspace.
m A, A*A, and VA*A have the same rank.
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Polar decomposition of an invertible map

Theorem

Every linear map A: X — X can be written as A = UP where P > 0 and U is unitary. This
is called the (left) polar decomposition of A.

To construct the polar decomposition, suppose A = UP.
Since P > 0, we can write P = QDQ*,and so

Now, notice that
A*A = (UP)*(UP) = P*U*UP = P*P = P2.

Therefore, P = \/A*A.

If Ais invertible, then U = AP~1 = Ay AA is uniquely determined.

In this case,

A=UP=(AVA"A )WVA"A.

If A is not invertible, then U still exists, but is not unique.
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Polar decomposition of a general linear map

Theorem

Every linear map A: X — X can be written as A = UP where P > 0 and U is unitary. This
is called the polar decomposition of A.

Suppose the eigenvalues of VVA*A are

)\12"'2)\r>)\r+1:"':)\m:07
and pick a set xi,...,xm of orthonormal eigenvectors. Then
! A A
—AX1, .., —AX X1, -5 X
)\1 ) ) Ar rs Xr+1, s Xm

is orthonormal. The polar decomposition is A = UP where P = vV A*A and

H
| | e

1 1
U= Tlel /\—rAx, Xrtl  tt Xm

| 1] — v —

Remark
If A: X — X and r := det P = | det A|, then

det A=detU detP = €' . r.
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Singular value decomposition

Need to do. ..
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Partially ordered sets

Recall that a partial order on a set X is a relation < that is:

(i) reflexive: x < x
(i) anti-symmetric: x <yandy <x = x=y
(iii) transitive: x <y <z = x<z

We say that x < y if x <y and x # y. The pair (X, <) is a partially ordered set (poset).
Alternatively, we can define a partial order by a relation < that is

(i) reflexive: x £ x
(i) anti-symmetric: x <y = y £ x
(iii) transitive: x <y <z = x< z.

Definition
Put a following partial order on the set of self-adjoint maps:

M<N iff N—M>Q0, M N iff N—M2>0.
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Basic properties of the poset of positive maps

The following easy facts all hold for positive numbers:

(i) If my < np and mp < np, then my + my < n1 + ny.
(i) If £ < m < n, then £ < n.

(iii) If m < nand a > 0, then am < an

(iv) f0<m< n, thenl/m>1/n>0.

Proposition 7.9
The following all hold for linear maps on X:
(i) If Mi < N7 and My < Ny, then My + My < Ny + Ns.
(i) FL<M<N, then L < N.
(iii) Given maps M < N and a scalar a > 0, we have aM < alN.
(iv) f0 <M < N, then M~1 > N~1 > 0. |
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The symmetrized product
Definition
If A,B: X — X are self-adjoint, their symmetrized product is

S = AB + BA.

Proposition 7.10
Let A, B be self-adjoint. If A > 0 and AB + BA > 0, then B > 0.
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