Lecture 2.7: Change of basis

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

In the previous lecture, we learned how a linear map $T: X \to U$ is encoded by a matrix, with respect to an input basis \mathcal{B}_X and output basis \mathcal{B}_U .

It is natural to ask how changing the bases changes the matrix.

In this lecture, we will answer this question.

In the special case of $T: X \to X$, we will see that two matrices A and B can represent the same linear map if they are similar. That is,

 $A = PBP^{-1}$, for some invertible matrix P.

We will show to how construct such a P, which is called a change of basis matrix.

Change of basis matrices

Let $T: X \to U$ be linear, and x_1, \ldots, x_n and u_1, \ldots, u_m be bases.

Since dim X = n and dim U = m, we have $X \cong K^n$ and $U \cong K^m$. (Let's say $K = \mathbb{R}$.)

An example in \mathbb{R}^2

Let $\mathcal{T} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be linear, and A the 2 × 2 matrix w.r.t. the standard basis $e_1, e_2 \in \mathbb{R}^2$.

Let's see what the matrix is with respect to a different basis, $v_1 = \begin{bmatrix} a \\ c \end{bmatrix}$ and $v_2 = \begin{bmatrix} b \\ d \end{bmatrix}$.