Lecture 2.7: Change of basis

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

In the previous lecture, we learned how a linear map $T: X \rightarrow U$ is encoded by a matrix, with respect to an input basis \mathcal{B}_{X} and output basis \mathcal{B}_{U}.

It is natural to ask how changing the bases changes the matrix.

In this lecture, we will answer this question.

In the special case of $T: X \rightarrow X$, we will see that two matrices A and B can represent the same linear map if they are similar. That is,

$$
A=P B P^{-1}, \quad \text { for some invertible matrix } P .
$$

We will show to how construct such a P, which is called a change of basis matrix.

Change of basis matrices

Let $T: X \rightarrow U$ be linear, and x_{1}, \ldots, x_{n} and u_{1}, \ldots, u_{m} be bases.
Since $\operatorname{dim} X=n$ and $\operatorname{dim} U=m$, we have $X \cong K^{n}$ and $U \cong K^{m}$. (Let's say $K=\mathbb{R}$.)

An example in \mathbb{R}^{2}

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be linear, and A the 2×2 matrix w.r.t. the standard basis $e_{1}, e_{2} \in \mathbb{R}^{2}$.
Let's see what the matrix is with respect to a different basis, $v_{1}=\left[\begin{array}{l}a \\ c\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}b \\ d\end{array}\right]$.

