Lecture 3.5: The determinant and trace of a matrix

Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra
The determinant of a 2×2 matrix

The determinant of an $n \times n$ matrix can be thought of as an alternating n-linear function of its column vectors.

Let’s use bilinearity to find a formula for the determinant of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.

The determinant of a 3×3 matrix

Let’s now apply this to finding the determinant of $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$.
The determinant of an $n \times n$ matrix

Proposition 3.8

The determinant of an $n \times n$ matrix $A = (a_{ij})$ is

$$\det A = \sum_{\pi \in S_n} a_{1, \pi(1)} a_{2, \pi(2)} \cdots a_{n, \pi(n)},$$

and by symmetry, $\det A = \det A^T$.

The trace of a matrix

Definition

The trace of an \(n \times n \) matrix is \(\text{tr} A = \sum_{i=1}^{n} a_{ii} \).

Proposition 3.9

(a) Trace is linear: \(\text{tr}(kA) = k(\text{tr} A) \) and \(\text{tr}(A + B) = \text{tr} A + \text{tr} B \).

(b) Trace is “commutative”: \(\text{tr}(AB) = \text{tr}(BA) \).

(c) Similar matrices have the same determinant and trace.