Lecture 3.5: The determinant and trace of a matrix

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

The determinant of a 2×2 matrix

The determinant of an $n \times n$ matrix can be thought of as an alternating n-linear function of its column vectors.

Let's use bilinearity to find a formula for the determinant of $A=\left[\begin{array}{ll}l_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$.

The determinant of a 3×3 matrix

Let's now apply this to finding the determinant of $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$.

The determinant of an $n \times n$ matrix

Proposition 3.8

The determinant of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} a_{1, \pi(1)} a_{2, \pi(2)} \cdots a_{n, \pi(n)},
$$

and by symmetry, $\operatorname{det} A=\operatorname{det} A^{T}$.

The trace of a matrix

Definition

The trace of an $n \times n$ matrix is $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}$.

Proposition 3.9

(a) Trace is linear: $\operatorname{tr}(k A)=k(\operatorname{tr} A)$ and $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B$.
(b) Trace is "commutative": $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(c) Similar matrices have the same determinant and trace.

