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Motivation: ODEs with repeated roots

Recall how to solve the differential equation y ′′ − 3y ′ + 2y = 0:

Look for a solution of the form y(t) = ert .

Plug back in to get ert(r2 − 3r + 2) = 0, and so r = 1 or r = 2.

The general solution is thus y(t) = C1et + C2e2t .

A “problem case” occurs when the “characteristic equation” has repeated roots.

For example, consider y ′′ − 2λy ′ + λ2y = 0.

The same process gives r1 = r2 = λ, so we only get one solution, y1(t) = eλt .

However, the solution space is two-dimensional. It turns out that y2(t) = teλt is also a
solution.

In this lecture, we’ll see how this arises as a generalized eigenfunction of a differential
operator.
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The derivative operator

Clearly, y1(t) = eλt is an eigenfunction of D = d
dt

.

Equivalently, it is in ND−λI , and solves the ODE

(D − λI )y = 0 ⇔
(

d
dt
− λ
)
y = 0 ⇔ y ′ − λy = 0.

Generalized eigenfunctions in N(D−λI )2 are solutions to the second order ODE

(D − λI )2y = 0, ⇔
(

d
dt
− λ
)2
y = 0, ⇔ y ′′ − 2λy ′ + λ2y = 0

It is easy to see that y2(t) = teλt is in N(D−λI )2 , because

D(y2) = D
(
teλt

)
= eλt + λteλt = y1 + λy2.

Similarly, y3(t) = 1
2!
t2eλt is in N(D−λI )3 , because

D(y3) = D
(

1
2!
t2eλt

)
= teλt + λ 1

2!
t2eλt = y2 + λy3.

Repeating in this manner, we see that the generalized eigevectors for D are:

· · · 1
4!
t4eλt 1

3!
t3eλt 1

2!
t2eλt teλt eλt 0

D−λI D−λI D−λI D−λI D−λI D−λI

The generalized eigenspace of D for eigenvalue λ is thus

Eλ =
{
p(t)eλt | p ∈ K [t]

}
.
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Systems of linear differential equations

Consider the linear system x ′ = Ax :[
x ′1
x ′2

]
=

[
1 1
4 1

] [
x1

x2

]
.

It is easy to check that if Av = λv , then x(t) = eλtv is a solution.

Thus, the general solution is

x(t) = C1e
3t

[
1
2

]
+ C2e

−t

[
1
−2

]
=

[
C1e3t + C2e−t

2C1e3t − 2C2e−t

]
.

Now, consider an example that has only one eigenvector:[
x ′1
x ′2

]
=

[
−1 −1
1 −3

] [
x1

x2

]
, x1(t) = eλtv1 = e−2t

[
1
1

]
.

In an ODE course, one is taught to look for a solution of the form

x2(t) = te−2tv + e−2tw ,

and solve for v and w .

We’ll see that what we’re really doing is finding generalized eigenvectors of A.
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Solving x′ = Ax with repeated eigenvalues

Suppose that Av = λv , and so x1(t) = eλtv is a solution. Consider

x2(t) = teλtv + eλtw ,

and plug this back into x ′ = Ax :

Ax2 = teλtAv + eλtAw .

x ′2 = (eλtv + λteλtv) + λeλtw .

Equate like terms and divide by eλt :

teλt : Av = λv

eλt : Aw = v + λw .

In other words, v = v1 is the eigenvector, and w = v2 a generalized eigenvector. The general
solution is

x(t) = C1x1(t) + C2x2(t) = C1e
λtv1 + C2e

λt(tv1 + v2).

In summary, if the generalized eigenvectors of A are

v2 v1 0
A−λI A−λI

then the generalized eigenvectors of A− d
dt

are

· · · eλt
(
t2

2!
v1 + tv2 + v3

)
eλt(tv1 + v2) eλtv1 0

A− d
dt

A− d
dt

A− d
dt

A− d
dt
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A Jordan matrix perspective

Formally, suppose we have the system x ′ = Ax , and A = PJP−1.

(P−1x)′ = J(P−1x), let z = P−1x ⇔ x = Pz.

Now, we just have to analyze z ′ = Jz for a Jordan matrix.

The solution is

z = eλt



1 t t2

2!
t3

3!
· · · tk−1

(k−1)!

1 t t2

2!
· · · tk−2

(k−2)!

1 t · · · tk−3

(k−3)!

. . .
. . .

...

1 t

1





C1

C2

C3

...

Cn−1

Cn


= eJtc.

It is easy to extend this to one where J has multiple Jordan blocks.
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An example

Let’s return to our example of x ′ = Ax , with only one eigenvector:[
x ′1
x ′2

]
=

[
−1 −1
1 −3

] [
x1

x2

]
, x1(t) = eλtv1 = e−2t

[
1
1

]
.

The Jordan canonical form A = PJP−1 is[
−1 −1
1 −3

]
=

[
1 1
1 0

] [
−2 1
0 −2

] [
0 1
1 −1

]
.

The solution is x = Pz, where z = eλteJtc:

x(t) =

[
1 1
1 0

]
e−2t

[
1 t
0 1

] [
C1

C2

]
= e−2t

[
1 t + 1
1 t

] [
C1

C2

]
=

[
C1e−2t + C2e−2t(t + 1)

C1e−2t + C2te−2t

]
.

Notice that we can rearrange terms to get this into a familiar form:

x(t) = C1e
−2t

[
1
1

]
+ C2e

−2t

(
t

[
1
1

]
+

[
1
0

])
= C1e

−2tv1 + C2e
−2t(tv1 + v2).

In other words, the generalized eigenvectors are:

e−2t

(
t

[
1
1

]
+

[
1
0

])
e−2t

[
1
1

] [
0
0

]
A− d

dt
A− d

dt
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