Course Audience

This course is targeted to graduate students or advanced undergraduates in mathematics, but it will be accessible to students in other quantitative fields, such as systems biology or bioengineering, provided that they are familiar with ideas from linear algebra and differential equations. Though ideals will arise from commutative and computational algebraic geometry, no advanced knowledge of these areas is required; only the mathematical maturity to pick up the basics if needed. Especially in the second half of the class, there is some flexible about which topics we cover, which can depend on the interests of the class. No biological background will be assumed.

Course Plan

This is a topics course, and will be much less work-intensive than a regular graduate prelim course. There will be light homework, to make sure that students keep up with the material beyond just attending lecture. Even in a-topics class, there is no substitute for problem solving. Students will also complete a project, =consisting of a short write-up and presentation of a research paper and/or topic related to algebraic biology. This will allow students to explore topics that they might be interested in, which we are not covering in $\xlongequal{\text { lecture. }}$
Questions Contact: macaule@clemson.edu, O-325 Martin Hall.

More info

The case for algebraic biology: from research to education | link
$=\overline{\text { Computer algebra in systems biology } \mid \text { link }}$
Can biology lead to new theorems? | link
Algebraic models, inverse problems, and pseudomonomials from biology | link

