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ABSTRACT
In contrast to the extensive use of linear algebra in biology, problems involving non-
linear polynomials—the field of algebraic biology—are more conspicuous. In this
article, we highlight two biological problems where similar algebraic structures arise
in very different contexts. Specifically, we will look at algebraic models of molecular
networks, and combinatorial codes of place fields in neuroscience. Both of these
topics involve inverse problems where the data is encoded with pseudomonomials,
simple algebraic objects that do not seem to have been studied much on their own,
but have gained considerable attention lately from their visibility in mathematical
biology. Though this article is algebraic in nature, it is written for the general math-
ematician with a minimal algebra background assumed. It provides two distinctive
features that have not yet appeared in the literature: (i) a survey of Boolean and
logical modeling from a computational algebra perspective, and (ii) a unification of
this topic with algebraic neuroscience by highlighting the role of pseudomonomials
in both fields.
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1 Introduction
Linear algebra, the study of linear polynomials and their solutions, is a fundamental pillar of mathematical biology. The analysis

of nonlinear polynomials and their solutions is considerably more complex, and involves �elds such as algebraic geometry and

computational algebra. Though these themes are not as ubiquitous in biology as linear algebra is, they nevertheless do arise in

a number of biological problems. Algebraic Biology is the sub�eld that encompasses these problems, and the new mathematics

that they spawn. A recent survey paper titled The case for algebraic biology: from research to education that is forthcoming in

a special educational issue of the Bulletin for Mathematical Biology (Macauley and Youngs, 2020) gives a brief overview of

four diverse problems in the �eld and then discusses their role within mathematical biology in the classroom and curriculum.

Only the bare minimum is given for each of these four problems—just enough to see how polynomials arise, and not much

else. Speci�cally, these applications are biochemical reaction networks, Boolean models of gene regulatory networks, algebraic

statistics and evolutionary models in phylogenetics, and place �elds in neuroscience.

In this paper, we will revisit two of these topics in algebraic biology where similar mathematical structures arise, despite the

fact that the biological problems that they model—gene regulatory networks, and place �elds in neuroscience, are very di�erent.

In particular, the concept of a pseudomonomial arises in both of these topics. Though pseudomonomials are easy to de�ne, they

are objects that do not seem to have been studied much outside of algebraic biology. Our hope is that this paper will serve as a

quick crash course on the topics while unifying the common mathematical structures. We will survey these topics to understand

which algebraic structures arise, what tools are used in the analysis, and to see several examples of new mathematics that has arisen.

This paper provides two distinctive features that have not yet appeared in the literature: (i) a survey of algebraic modeling from a

computational algebra perspective, and (ii) a uni�cation of this topic with algebraic neuroscience by highlighting the signi�cance

of pseudomonomials in both of these �elds. The aim for the level of this paper is similar to a typical “What Is. . .” article in the

AMS Notices. It should be generally accessible, but individuals in related �elds will gain even more from it. Admittedly, it will

be more accessible for an algebraist than for a classical mathematical biologist. However, the presentation of the algebra is only

at the undergraduate level, and even then, understanding all of the details is not necessary. We encourage the interested classical
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mathematical biologist to recruit an algebra-minded colleague to work through this paper together, because both should bene�t

from such an endeavor, as the topic is multifaceted and interdisciplinary in nature.

The remainder of this paper is structured as follows. In Section 2, we will give a brief history of mathematical biology, from

classical topics such as population models to modern methods involving discrete mathematics and algebraic geometry. Section 3

will be a survey of algebraic models of molecular networks. Speci�cally, after describing the framework and how polynomials

arise, we will give a tour of some of the basic questions and methods, and how computational algebra arises in the analysis. We

will show how Gröbner bases can be used to �nd the steady-states, and then how the primary decomposition of square-free

monomial ideals can reconstruct biological networks from experimental data. If one wants to determine which interactions are

activations and which are inhibitions, then one can use pseudomonomial ideals instead. We will show how the model space—

the set of functions that �t a set of data, has an a�ne ideal structure, much like the solution space to an inhomogeneous system

of equations Ax = b, or an inhomogeneous ODE x′ = Ax + b. We will show how to compute these solutions using tools

from computational algebra—or at least, have a software package compute them. We will discuss the model selection problem

of �nding the “best �t” function from the large model space, and how this can be done with a Gröbner normal form. Finally,

we will discuss how certain functions tend to arise in biological networks. One such example is canalizing functions, and an

important class of these can be constructed with pseudomonomials.

In Section 4, we will turn our attention to a completely di�erent biological problem—that of reconstructing neural place

�elds from experimental data of �ring patterns of neurons. We will summarize an algebraic approach that is even a newer topic

than algebraic models, as the �rst paper was only published in 2013. However, similar mathematical structures arise, including

�nite �elds, pseudomonomial ideals, and their primary decompositions. It is not at all our expectation that the readers of this

article know any of the algebraic buzzwords that we threw out there in the last two paragraphs. Moreover, we will not even

de�ne most of these, though we may give an informal description of what they are. Instead, our goal is to write this article in a

way that it will reach readers who do not know these terms.

2 A brief history of mathematical biology
Before we get into any technical details, we will �rst give some historical context so we can understand how the �eld of mathe-

matical biology got to where it is today. Traces of mathematical biology can be found in work by Fibonacci (c. 1170–1250) and

Daniel Bernoulli (1700–1782). Exponential growth as a population model was published by Thomas Malthus at the turn of

the 19th century (Malthus, 1803). Several decades later, the logistic model was published by Pierre-Francois Verhulst (Verhulst,

1838). The �eld gained real traction in the early 20th century with the development of the Lotka-Volterra predator-prey equa-

tions (Lotka, 1925). For the next few decades, mathematical biology almost exclusively consisted of continuous-space models

such as di�erential equations (continuous-time) and di�erence equations (discrete-time). These type of models are still a major

thrust of the �eld, and will likely always be, for good reason.

Discrete mathematical structures started to creep into biology around the 1960s, from several di�erent angles. The discovery

of the lactose operon in E. coli by Jacob, Lwo�, and Monod, led to a 1965 Nobel Prize (Jacob et al., 1960). This was the �rst

instance of what now is know as a gene regulatory network, and it put forth the concept of a biological network. Eventually, this

would lead to the emergence of the �eld of systems biology (Alon, 2019). Also around this time, Noam Chomsky was develop-

ing his theory of universal grammars, which led him to be known as the “father of modern linguistics” (Chomsky, 2014). These

ideas were picked up by biologists and applied to genomics, since Watson, Crick, and Franklin had only recently discovered

that the genetic code is basically a language over the alphabet {A,C ,G,T }. This was the precursor to what would become the

�elds of bioinformatics and computational biology. Also in the late 1960s and early 1970s, several di�erent scientists an ocean

apart proposed studying molecular networks using Boolean logic. In North America, theoretical biologist Stuart Kau�man pi-

oneered the concept of a Boolean network to model gene networks (Kau�man, 1969a,b). In Europe, geneticist René Thomas

independently introduced the discrete-state logical modeling framework (Thomas, 1973). One of the main di�erences between

these two frameworks is that Kau�man applied the local functions synchronously, whereas Thomas considered asynchronous

updates. A fantastic historical perspective on these developments can be found in a recent special issue of the Journal of Theoret-
ical Biology, dedicated to the late Thomas (Thie�ry and Kaufman, 2019). Also around this time, Princeton mathematician John

Conway popularized the cellular automaton he called the Game of Life (Gardner, 1970). Though this last one was at best, only

very loosely connected to actual biology, it helped give support to the idea of discrete-state and agent-based models of biological

systems.

The 1990s and early 2000s saw a revolution within computational biology due to the advent of technology such as high-

throughput sequencers and DNA microarrays, as well as a massive increase in computer processing power. This led to the

emergence of relatively new �elds such as computational biology (Waterman, 2014), systems biology (Alon, 2019) and bioinfor-

matics (Mount, 2004). New computationally intensive problems that were pipe dreams just a few years prior, suddenly became

thrust within the realm of reality. Examples include sequence alignment, whole genome sequencing, protein and RNA folding,

and phylogenetic tree construction. Many of these problems are transdisciplinary in nature, and have attracted researchers from



LETTERS IN BIOMATHEMATICS 83

not just the mathematical and biological sciences, but also computer science, operations research, engineering, physics, neuro-

science, and medicine. Many of these problems are more inherently “discrete” than “continuous” in nature due to the presence

of networks and genomic data. Despite all having strong mathematical underpinnings, they are often not considered mathemat-

ical biology, simply because of their broad reach well beyond just mathematics. Of course, this summary would be incomplete

without the mention of biostatistics. Biological research is inherently messy and contains large troves of data. Nearly all of the

aforementioned research problems have major statistical components, and data analysis is such an important part of biological

research that biostatistics has become its own giant �eld.

The goal of this paper is two-fold: 1) to show how algebraic methods can be used to provide answers to biological problems

that may be di�cult or impossible to tackle otherwise and 2) to demonstrate how the process of looking for solutions to those

biology-generated questions may lead to new mathematics. As the �eld of algebraic biology has expanded signi�cantly in the

last decade, it would be impossible to present, in a single paper, all types of scienti�c questions and all types of mathematical

tools that tie biology with new algebraic and combinatorial approaches. Instead, we have opted for discussing how questions

about inferring unknown biological structures from experimental data arise naturally in two very di�erent settings: molecular

networks, and neuroscience. These are examples of reverse engineering, and are also sometimes called inverse problems. The two

inverse problems that we highlight can both be approached by using pseudomonomial ideals—mathematical structures that are

of signi�cant interest in their own right and whose full mathematical theory is still waiting to be developed—thus showing how

through many of its questions, modern biology now drives mathematical discovery.

3 Algebraic models of molecular networks

3.1 Background and motivation
Cellular processes are governed by a complex system of interactions between proteins, small molecules, RNA, and DNA. These

dynamical interactions produce tightly coordinated cellular behaviors such as transcription, translation, energy transport, and

internal and external signaling. Correct regulation of these processes ensures that vital biological functions are executed prop-

erly and that, in the long run, a cell reaches its physiologically appropriate state or cell fate. Disruption of this biological order

may impact signaling pathways and lead to malfunctioning and disease—e.g., mitochondrial diseases, lysosomal storage dis-

eases, diabetes, and cancer (Fernández-Tajes et al., 2019; Laubenbacher et al., 2009; Marí and Fernández-Checa, 2007). Cellular

systems may contain hundreds or thousands of components that are coordinated by multiple feedback loops and interact in a

nonlinear fashion. Predicting their dynamic behavior, as well as determining possible causes for certain macro e�ects is extremely

challenging, thus making experimental approaches to answering those questions virtually impossible.

The discipline that studies how interactions among a system’s components leads to emergent behaviors in living organisms

is systems biology—an interdisciplinary �eld that uses mathematical models and computation to study mechanisms by which

coordinated action of biological units leads to speci�c functional performance. Theoretical approaches provide methods that

allow us to study cellular systems analytically or through simulation approaches, and determine components that play critical

roles in achieving desired behaviors. Others may form “backup channels” to ensure robustness in case of certain malfunctions,

yet others may appear to be there as artifacts from evolutionary changes and/or serve functions unknown to us. Classifying those

components and understanding their respective roles is critically important in understanding how a system behaves. Further-

more, understanding the main causes for maintaining or disrupting cellular behaviors highlights directions toward designing

intervention strategies to control the system and drive it away from unwanted (diseased) states.

Di�erent approaches are being used to model biomolecular systems, including ordinary di�erential equations (ODE), alge-

braic models (Boolean, �nite-state), and hybrid models. ODE models require detailed knowledge of the kinetic processes that

determine the system’s dynamics, as well as understanding how they impact one another over time. Such information is usually

unavailable for large cellular systems, and this is a real drawback to using ODEs to model cellular processes. Algebraic models, on

the other hand, allow only a �nite number of states for each of the system’s components, and the dynamic behavior of the system

is determined by simple (e.g., Boolean) rules describing how these components interact. The term “algebraic” is used because

these rules can be represented with polynomials, and analyzed using techniques from computational algebra. Unlike quanti-

tative ODE models, algebraic models are inherently qualitative and can capture emergent system properties without requiring

detailed knowledge of the kinetics of cellular interactions. It has been shown that many fundamental dynamic behaviors of a

cellular system may be derived solely from the network topology and the rules of interaction between its components (Albert

and Othmer, 2003). Algebraic models have also been shown to capture more complex cellular behaviors and describe biological

responses depending on environmental stimuli—e.g., excitation, adaptation, multistability (Robeva and Hodge, 2013, Chap-

ter 4). Finally, algebraic models can often handle gaps in knowledge when available information about the network construction

is incomplete (Li et al., 2006; Saez-Rodriguez et al., 2009). These properties of algebraic models make them an appealing alter-

native to ODEs for modeling cellular systems.

For algebraic models, we use a directed graph to represent the network of interactions—the nodes represent the various
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biomolecular species and the edges denote the interactions between them. The temporal dynamics is governed by the update

rules described earlier. Once a model is constructed and validated, its attractors and steady states are mapped to important

known biological states or behaviors. Identifying those states, as well as their basins of attraction (that is, the initial and transient

states that converge to each attractor), is of high interest—they can provide insights regarding the long-term dynamics and sta-

bilization of a system (representing, e.g., di�erent cell fates or phenotypes) under changing environmental signals or in response

to perturbations.

3.2 Algebraic modeling framework
Consider a molecular network such as a gene regulatory network with n nodes, where xi is the state of node i. This typically

describes a quantity such as a gene expression level or concentration of a protein or enzyme. It can also denote the presence or

absence of a feature, such as whether or not a portion of a DNA strand is looped, which is one way to block transcription. In an

algebraic model, concentrations and gene expression levels are discretized, such as high vs. low (basal), or high, medium, and low.

These can be represented as Boolean or ternary states, e.g., F2 = {0, 1} or F3 = {0, 1, 2}. Of course, there are other possibilities,

but these are the most common. In some models, certain nodes will be Boolean and other might be ternary. However, from a

computational algebra perspective, things are mathematically easier and we lose no generality if we assume that the state of every

node is from the same set, a �eld F = Fp = {0, 1, . . . , p − 1}. If we want or need a particular quantity to have additional states,

then we can achieve this by introducing a new variable. For example, if we want to express three levels of lactose concentration

in a Boolean model, we can use two variables, letting L represent high levels and Lm represent (at least) medium levels. As such,

(L,Lm) = (0, 0) would mean low concentration, (L,Lm) = (0, 1) would describe medium concentration, and (L,Lm) = (1, 1)
would mean high concentration. The fourth possibility of (L,Lm) = (1, 0) is meaningless and can be disregarded, just like how

certain states in an ODE model are ignored, like when population is negative. Finally, the choice of Fp for a prime p, rather than

say, 4 or 6, is motivated because most of the computational algebraic techniques require Fn to be a prime �eld. This also loses

no generality, because even if there are naturally 6 states, we can just include that into a larger set, such as F7.

Time is also usually discretized, as t = 0, 1, 2, . . . , but there can be variants of this as well. If we let xi (t) be the state of node i
at time t, then the state xi (t+1) at the following time-step is some function of the states of the nodes. That is, it is described by a

local function fi : F
n → F. As such, models like this are sometimes called local models (Robeva and Macauley, 2018, Chapter 4).

Each local function can be expressed as a polynomial in the ringR = F[x1, . . . , xn]. Such a representation is not unique because

xp = x in Fp. However, we can force uniqueness by declaring that x
p
i = xi for each i = 1, . . . , n. Equivalently, this means that

each function can be expressed uniquely as an element of the quotient ring

Q = F[x1, . . . , xn]/〈x
p
1
− x1, . . . , x

p
n − xn〉. (1)

A simple counting argument shows that there are pn monomials in Q, and thus pp
n

elements, i.e., functions Fn → F. Through-

out this section, we will refer toR andQ as the aforementioned ring of polynomials, and quotient ring of functions, respectively.

Representing local biological functions as polynomials opens the door to using the rich toolbox of computational algebra for

the analysis of the models and related algorithms. In light of this viewpoint, these models are sometimes called algebraic models.
We will primarily use this term in this paper because of the focus on algebraic biology, though the special case when p = 2 is

often called a Boolean model. A number of other terms exist in the literature, often describing specialized cases. For example,

Boolean models are often called Boolean networks, especially if the study of them is detached from actual models. A large swath of

researchers, especially in Europe, use the term logical model (Abou-Jaoudé et al., 2016). Other term, such as automata networks
(Goles and Martínez, 2013), or generalized cellular automata, can also be found in the literature.

Every algebraic model has a directed graph called a wiring diagram that describes which functions depend on which vari-

ables. We say that xi a�ects fj positively if fj (x) < fj (x′) for some input vectors x = (x1, . . . , xn) and x′ = (x′
1
, . . . , x′n) that are

identical except in their ith coordinates, where xi < x′i . Similarly, xi a�ects fj negatively if fj (x) > fj (x′) under the same assump-

tions. In the special case of Boolean logic, xi a�ects fj positively if xi (but not ¬xi) appears in the function fj , and negatively if

¬xi appears but xi does not. A variable can a�ect a function both positively and negatively, like in the logical XOR function

f (x + y) = (x ∧ ¬y) ∨ (¬x ∧ y) = x + y (mod 2).

Notice that a general Boolean expression can be written as a polynomial over F2 by replacing x∧ ywith xy, x∨ ywith x + y+ xy,

and ¬x with 1 + x.

The (unsigned) wiring diagram of an algebraic model has vertex set [n] = {1, . . . , n} with an edge i −→ j if the function fj
depends on xi . Often, it is desirable for these edges to indicate whether the relationship is positive or negative. In a signed wiring

diagram, if xi a�ects fj positively, we depict this as i −→ j, and if the relationship is negative, then we draw i j . If the

interaction is positive and negative, such as the XOR function, then both types edges can be included in the wiring diagram.

However, many biological interactions are strictly positive or negative in a �xed coordinate, as they represent activation, and
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inhibition or repression, respectively. Such a function is said to be unate. Indeed, functions that arise as local functions in

biological models are generally much tamer than arbitrary n-variable functions. This means that the dynamics of actual Boolean

models are more ordered, or less chaotic, than randomly constructed Boolean networks (Gershenson, 2004).

At this point, we have not actually de�ned what we mean by the dynamics of an algebraic model, and that is intentional

because the framework is quite general. Moreover, the model is just the local functions themselves—hence the name local
model. The computation and analysis of the dynamics is really just a type of model validation. The functions can be updated

synchronously, asynchronously (in multiple ways), or in some hybrid scheme such as a block-sequential update. Sometimes

stochasticity is desired, and the local functions can de�ne an object such as a continuous-time Markov chain (Stoll et al., 2012)

or probabilistic Boolean network (Shmulevich and Dougherty, 2010). Though biological processes happen at di�erent time-

scales, this can be incorporated into a model by adding additional variables, in a similar spirit to how extra variables can be used

to capture additional states of the nodes (Hinkelmann and Laubenbacher, 2011).

It is undoubtedly more natural to use some sort of asynchronous update because cells do not have a central clock under

which everything evolves simultaneously. However, certain salient features of a model, such as the steady states, are independent

of update scheme. Moreover, since biological networks need to be robust due to all sorts of variability such as changes in tem-

perature, pH, mutations, timing, etc., one can make the case that if a proposed algebraic model can be validated despite using

an arti�cial synchronous update, then that provides compelling evidence for its soundness. Also, the synchronous update is

simpler and more amenable to certain algebraic methods that we will survey in this article.

At time t, the (local) state of node i is xi (t), and so the global state of the system is a vector

x(t) =
(
x1 (t), . . . , xn (t)

)
∈ Fn.

Updating all vertices synchronously de�nes a dynamical system map

f : Fn −→ Fn, x(t + 1) = f (x(t)) =
(
f1 (x(t)), . . . , fn (x(t))

)
.

Sometimes we write this map as f = (f1, . . . , fn), and it is not hard to see that every dynamical system map f : Fn → Fn can be

decomposed into local functions in this manner.

3.3 Steady-state analysis
One of the fundamental features of any model is to analyze its long-term behavior, especially any steady-states, or �xed points.

For an algebraic model, regardless of whether it is updated synchronously or asynchronously, �nding the �xed points amounts

to solving x(t + 1) = x(t). This can be described by the following system of n equations:{
fi (x) = xi | i = 1, . . . , n

}
. (2)

Systems of polynomial equations such as these can be analyzed using techniques from computational algebraic geometry. For

example, if we de�ne the ideal

I =
〈
fi − xi | i = 1, . . . , n

〉
=

{
(fi − xi)h | h ∈ R

}
,

then the solution to Eq. (2) is simply the algebraic variety V (I) of I . A computer algebra package such as Macaulay2 (Grayson

and Stillman, 2020) or Singular (Decker et al., 2020) can �nd this by computing a Gröbner basis, which returns a simpler system

with the same set of solutions, much like how row-reducing a system of linear equations returns a simpler (upper triangular)

system with the same solutions.

To see an example of this, consider the following toy Boolean model from (Robeva and Hodge, 2013, Chapter 2) of the

lactose operon in E. coli, the �rst gene regulatory network that was discovered:

x1 (t + 1) = x3 (t)
x2 (t + 1) = x1 (t) (3)

x3 (t + 1) = (x2 (t) ∧ Lm) ∨ L ∨ (x3 (t) ∧ ¬x2 (t)).

Here, the variables x1, x2, and x3 represent concentrations of lac mRNA, the β-galactosidase enzyme, and allolactose (an isomer

of lactose and the operon’s inducer), respectively. There are two parameters, L and Lm, which represent extracellular lactose,

and together allow us to describe high, medium and low levels, by (L,Lm) = (1, 1), (0, 1), and (0, 0), respectively. These are

taken to be constants because their levels change much more slowly than the concentration of the gene products inside of the

cell. They should be thought of like initial conditions of a di�erential equation—we must analyze and validate the model for all

three possibilities.
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To �nd the �xed points of the model in Eq. (3), we work in the quotient ring of Boolean functions

F2 [x1, x2, x3,L,Lm]/
〈
x2
1
− x1, x22 − x2, x23 − x3,L2 − L,L2m − Lm

〉
.

The solution to the system of equations {fi − xi = 0 | i = 1, 2, 3} is the variety of the ideal

I =
〈
fi − xi | i = 1, 2, 3

〉
=

〈
x3 + x1, x1 + x2, (1 + x3 + x2x3 + x2Lm)L + x2 (x3 + Lm)

〉
.

Notice that −xi = xi over F2. A computer algebra package easily computes a Gröbner basis to be

G =

{
x1 + x3, x2 + x3, (1 + Lm)x3 + (1 + Lm)L, (1 + x3)L

}
.

If we call the four polynomials above g1, . . . , g4, then the system {gi = 0 | i = 1, . . . , 4} has the same set of solutions as the

original system {fi − xi = 0 | i = 1, 2, 3}, but it is much easier to solve. For example, consider the initial condition where there

are only medium levels of extracellular lactose, i.e., (L,Lm) = (0, 1). The Gröbner basis then becomes G = {x1 + x3, x2 + x3},
which over F2 means that x1 = x3 and x2 = x3. Thus, there are two steady-state solutions,

x = (x1, x2, x3) = (0, 0, 0), and x = (x1, x2, x3) = (1, 1, 1),

corresponding to the operon being o� and on, respectively. This is an example of the well-known phenomenon of bistability—

the system having two stable steady-states when there are medium concentration levels of the inducer. The fact that the lac
operon is known to exhibit bistability is promising evidence for the soundness of our model (Ozbudak et al., 2004). Of course,

this alone does not validate such a model, but it provides evidence. If we repeat the above process for the other two initial

conditions, (L,Lm) = (0, 0) and (1, 1), we will see that in each case, there is a single steady-state solution, which matches what

is expected biologically. Overall, these are necessary, but not su�cient steps for model validation.

Actual Boolean models are typically larger than just three nodes. The toy example above was speci�cally chosen from an

exercise in (Robeva and Hodge, 2013, Chapter 2), because it is small yet exhibits bistability. A published Boolean model for the

lac operon (Veliz-Cuba and Stigler, 2011) has 10nodes and 3parameters, which is still small enough that a computational algebra

software package can easily handle the necessary computations. A published model of the related arabinose (ara) operon in E.
coli has 9 nodes and 4 parameters (Jenkins and Macauley, 2017). However, a number of published algebraic models are simply

too large. For example, the model in (Albert and Othmer, 2003) of the segment polarity genes in the fruit �y has 60 nodes, and

solving polynomial systems in 60 variables is computationally prohibitive.

To overcome this limitation, it may be necessary to �rst consider methods for reducing the size of a system in a way that

preserves its attractors. Many such algorithms—see e.g., (Naldi et al., 2011; Saadatpour et al., 2011; Veliz-Cuba et al., 2014;

Veliz-Cuba and Laubenbacher, 2012; Veliz-Cuba and Geiser, 2016; Zañudo and Albert, 2013), have brought about powerful

network reduction approaches. However, each of them comes with some limitations and no method appears to be optimal for all

scenarios. For instance, the reduction method introduced in (Veliz-Cuba et al., 2014) is e�cient for large networks (up to 1000

nodes) for determining only the �xed points of a system, while Zañudo and Albert (2013) determined all attractors for networks

with up to 200 nodes. Their method for performing attractor analysis is based on the expanded network of a system—one that

integrates the update rules with the network topology. This framework has also been used successfully for network control,

e.g., for cell fate reprogramming in T-cell leukemia (Zañudo and Albert, 2015) and for target control of algebraic models for the

epithelial-to-mesenchymal transition (EMT) network and the PI3K mutant ER+ network (Yang et al., 2018). We will discuss

control of molecular networks in Section 3.9.

3.4 Network inference, min-sets, and monomial ideals
The process of building and analyzing an algebraic model, such as the example of the lac operon we just saw, is an instance

of forward engineering. It assumes that the network of biological interactions for the model is already known. In these cases,

such models are constructed with evidence from the literature, and they are built and tested to reproduce known experimental

results—see e.g., (Zhang et al., 2008). However, such methods require much time and e�ort and rely on the assumption that

information on most biomolecular interactions for the system in question are already available. Such knowledge could indeed be

obtained experimentally, but the laborious approaches it relies on do not scale up when we need to uncover interactions within

networks of hundreds or thousands of nodes.

The opposite problem is known as reverse-engineering, which is a type of inverse problem. Speci�cally, given data about the

dynamics of the model, what can we infer about the model itself? For example, it may be of interest to infer the wiring diagram,

i.e., determine how the genes, proteins, and enzymes interact. This is sometimes called the network inference or network recon-
struction problem. There are many algorithms that approach this using a variety of frameworks and techniques. For example,

(Friedman et al., 2000; Hartemink et al., 2000) explored using Bayesian networks, whereas in (Yeung et al., 2002) the authors
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approximated a system of linear di�erential equations near a steady-state and considered the singular value decomposition of

the matrix. The method that we will review in this article uses computational algebraic geometry. It was originally published in

(Jarrah et al., 2007), and a survey can be found in (Robeva and Macauley, 2018, Chapter 6). A harder problem than inferring

the network is to reverse-engineer the actual functions in the model. At times, we prefer the term “reverse engineer” to “inverse

problem” because the former is a verb, and the latter is quite general—there are inverse problems for which it would be a stretch

to say that something is being reverse engineered.

Let’s start with the easier problem of reverse engineering the wiring diagram of an algebraic model. We can ask for just

the interactions (directed edges), or we can ask for the signed wiring diagram, i.e., which interactions are inducers (positive) and

which are inhibitors (negative). This might require extra assumptions on the functions, because not every function is necessarily

unate (either positive or negative in any given coordinate). However, as previously stated, many biological interactions are simple

enough that they can be modeled by such functions, and so this assumption is often well-founded.

The available data for a reverse-engineering problem is likely experimentally determined, and might consist of a time-series or

several snapshots of gene expressions levels. Naturally, these will be �oating point values, but they can be discretized to Boolean,

ternary, or more generally, F = {0, 1, . . . , p − 1}. Alternatively, one can disregard the numeric values and just look at when the

levels are increasing vs. decreasing. There are a number of other challenging problems, such as how to handle noisy data, or

how large of a data set these algorithms will scale to, but we will not discuss these in this article. Indeed, the inherent messiness

of biological data presents a never-ending problem because algorithms are never as simple as black boxes that spit out a golden

answer.

The question of how to discretize the data is a challenge in itself and, once again, there is no one right answer for every

setting. For now, we will ignore this problem, refer the interested reader to (Dimitrova, 2010), and assume henceforth that we

already have discretized data, and focus on what to do next. We should note however, that none of what we will do depends on

how �nely the data is discretized, i.e., it works just as well for any Fp. Additionally, we will only consider one local function at a

time, because reverse-engineering the network can be done node-by-node. For our purposes, we will de�ne a set of data to bem
snapshots of input-output pairs of the form

D =

{
(s1, t1), . . . , (sm, tm)

}
, (4)

where si = (si1, . . . , sin) ∈ Fn is a vector of gene expression levels or concentrations, and ti ∈ F. The input vectors must be

unique, but the output values need not be. We say that a local function f : Fn → F fits the data if f (si) = ti for all i = 1, . . . ,m.

The (local) model space, denoted Mod(D), is the set of functions that �t the data. It makes no di�erence whether we de�ne this

in the ring R of polynomials or the quotient ring Q of functions, where each x
p
i = xi . Formally, the model space is

Mod(D) =
{
f ∈ Q | f (si) = ti for all i = 1, . . . , n

}
.

If we want to reverse-engineer the wiring diagram, then we are interested in what are the possible supports of a function f ∈
Mod(D), i.e., the sets of variables on which f depends. In terms of the wiring diagram of a graph, we are asking what are the

minimal sets of incoming edges to that particular node.

It is easiest to express the support of a function f , denoted supp(f ), as a subset α of [n] = {1, . . . , n}, which we will write

with a string. For example, we can write α = 125 for {1, 2, 5} ⊆ [6], which represents the subset {x1, x2, x5} of variables. We will

denote the complement with a bar, i.e., α = 346 represents [6] \ α = {3, 4, 6}. Every α ⊆ [n] canonically de�nes a square-free
monomial xα. For example, if α = 125, then xα = x1x2x5. Now, we can de�ne a few terms about what sets of variables are

su�cient, necessary, or unnecessary to �t a set D of data.

De�nition 1. Let D be a set of data. A subset α ⊆ [n] is feasible with respect to D if there is some f ∈ Mod(D) such that

supp(f ) ⊆ α. It is disposable if there is some f ∈ Mod(D) for which supp(f ) ⊆ α.

In plain English, a set α is feasible if there is some function that �ts the data using only those variables. It is disposable if

none of those variables are needed to construct a function that �ts the data; otherwise it is non-disposable. Note that a subset

α ⊆ [n] is (non-)disposable if and only if its complement α is (in-)feasible. To reverse engineer the wiring diagram at a particular

node, it su�ces to �nd all possible supports of functions in the model space. We will do this by asking which feasible subsets α
are minimal with respect to subset inclusion, and we will call these min-sets.

De�nition 2. Let D be a set of data. A subset α ⊆ [n] is a min-set of D if it is a minimal feasible set, or equivalently, if its

complement α is a maximal disposable set.

Throughout, we’ll assume thatD is a �xed set of data. It is easy to see that disposable sets are closed under taking subsets and

intersections, and feasible sets, as well as non-disposable sets, are closed under taking supersets and unions. In other words, the

disposable and the infeasible sets each form an abstract simplicial complex (a collection ΔD ⊆ 2
X

of subsets of X = [n], called

faces, that are closed under subsets) and the feasible sets and the non-disposable sets de�ne monomial ideals. We will not give



88 M. MACAULEY, R. ROBEVA

xyz

xy xz yz

x y z

∅

Non-faces ζ ∈ ΔcD
Ideal IΔc

D
generated by non-faces

Non-disposable sets

xyz

xy xz yz

x y z

∅

Faces α ∈ ΔD
Monomials not in IΔc

D

Disposable sets

∅

z y x

yz xz xy

xyz

Complements α of faces α ∈ ΔD
Primary components of IΔc

D
(shaded)

Feasible sets (min-sets shaded)

Figure 1: A visualization of the non-disposable, disposable, and feasible sets and the corresponding combinatorial and algebraic

structures. This example arises from a data set D that we will see in Eq. (5).

all of the details here, but the beautiful Stanley-Reisner theory from combinatorial commutative algebra guarantees a bijection

between simplicial complexes and square-free monomial ideals (Francisco et al., 2014). The technical details of these are not

crucial for this article, and so we will omit them. However, there are two important take-aways. The �rst key point is that this

ideal is generated by monomials xα from the non-faces, i.e., α ∈ ΔcD ≔ 2
X \ ΔD. In our language, this means that the ideal is

generated by the non-disposable sets. The second key point is that upon taking the primary decomposition of this ideal—a process

analogous to factoring an integer into prime powers, the individual primary components correspond to the complements of the

maximal faces. In our language, this means that the primary components describe the complements of the maximal disposable sets,
i.e., the min-sets. The relationship between these algebraic and combinatorial concepts is subtle and tricky, especially because

there are two types of set complements involved—the complementΔcD = 2
X \ΔD of a simplicial complex, and the complement

α = X \ α of a face α ∈ ΔD. Figure 1 provides a helpful visualization of these concepts and how they are related. Soon, we will

see an actual data set D that corresponds to this example.

Returning to the �rst key point described above, one way to �nd a non-disposable set of D is to look at pairs si , sj of input

data vectors that have di�erent output values, ti ≠ tj . The set of coordinates in which they di�er must be non-disposable, because

the change in output must have been caused by some of these variables. We can encode this set with a square-free monomial, by

multiplying all of these variables together, which we denote as

m(si , sj) =
∏
sik≠sjk

xk.

The ideal of non-disposable sets is the ideal generated by all such pairs of input vectors in D that have di�erent output values.

De�nition 3. Let D be a set of data. The ideal of non-disposable sets is

IΔcD =

〈
m(si , sj) | ti < tj

〉
.

The assumption that ti < tj is not necessary, but it is convenient because m(si , sj) = m(sj , si). However, it will be needed

later for the signed analogue of this. As an aside, the reason for the complicated and non-standard notation of this ideal is because

it is “the ideal generated by the non-faces of the simplicial complexΔD.” The second key point above characterizes the min-sets in

terms of this ideal.

Theorem 4 (Jarrah et al., 2007). The generators of the primary components of the ideal of non-disposable sets IΔcD are the min-sets
of D.

Let us pause to do a quick example illustrating min-sets. A Boolean function f : F3
2
→ F2 is characterized by the output

values of all 2
3
= 8 input vectors, often called its truth table. Suppose we just know three of these, as described by the following

data set, where we are writing a vector x = (x, y, z) as a string xyz:

D =

{
(s1, t1), (s2, t2), (s3, t3)

}
=

{
(111, 0), (000, 0), (110, 1)

}
. (5)

There are �ve unknown output values, and since there are two possibilities for each of them, exactly 2
5
= 32 functions �t this

data. In other words, the model space has size |Mod(D) | = 32.
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Two of the three pairs of input vectors in Eq. (5) have di�erent output values, so the ideal of non-disposable sets is

IΔcD =

〈
m(s1, s3), m(s2, s3)

〉
= 〈z, xy〉. (6)

The lattice on the left in Figure 1 highlights the square-free monomials in IΔcD , which are the non-faces of ΔD. The faces are

shown in the middle lattice of Figure 1. The primary decomposition is a way to express the ideal as an intersection of primary

ideals, called its primary components. Though in general this is di�cult to compute, for square-free monomials ideals, these are

just the ideals generated by the elements in the complements of the maximal faces of the corresponding simplicial complex. For

small examples, this can be computed by hand. Otherwise, it is an easy task for any computational algebra software package.

Continuing the example from Eq. (6), the corresponding simplicial complex has two maximal faces, {x} and {y}. Thus, the

elements in the complements of these generate the primary components, 〈y, z〉 and 〈x, z〉. This is shown in the rightmost lattice

of Figure 1, and it means that

IΔcD = 〈z, xy〉 = 〈x, z〉 ∩ 〈y, z〉.

By Theorem 4, the min-sets of D are {x, z} and {y, z}. In other words, if a function f �ts the data given in Eq. (5), then its

support must contain z, and also either x or y.

Not surprisingly, the mathematical tools highlighted in this section have not been widely used for research in biology. The

primary reason is likely because the intersection of people or teams who work on problems in system biology and who have a

knowledge of computational algebra is quite small. However, there are several notable examples that highlight the potential of

these methods. Allen et al. (2006) used this algebraic framework to reverse-engineer a signaling network in the yeast S. cerevisiae
by collecting time-series data from stress induced by copper. In (Stigler and Chamberlin, 2012), the authors used algebraic

methods to infer gene networks involved in the muscle and skin cell fates in the model organism and roundworm C. elegans.

3.5 Signed min-sets and pseudomonomial ideals
The monomial m(si , sj) is constructed by taking the product of the variables xk corresponding to the coordinates in which si
and sj di�er. Suppose that additionally, we want to encode how they di�er, analogous to a discrete version of a partial derivative.

One solution to this was �rst published in (Veliz-Cuba, 2012), and has also appeared in a recent survey in (Robeva and Macauley,

2018, Chapter 6).

Since si and sj have di�erent outputs, we can assume without loss of generality that ti < tj , and ask whether this increase in

output value corresponds to an increase or decrease in the kth coordinate of the input vector. We can encode an increase sik < sjk
with xk − 1 and a decrease sik > sjk with xk + 1, and then multiply all of these terms together. Of course, the resulting polynomial

is not a monomial, but it somewhat resembles one. Speci�cally, if we change variables by replacing xk − 1 with yk and xk + 1

with zk—an operation called polarization (Güntürkün et al., 2019), then we get a monomial but in a di�erent polynomial ring.

Though the original polynomial is not a monomial, we call it a pseudomonomial. To do this, we need to be working in a �eld

where 1 ≠ −1, and so we will choose F3 = {0, 1,−1} rather than F2 = {0, 1}. Formally, for each ti < tj , we de�ne

p(si , sj) =
∏
sik≠sjk

(
xk − sign(sjk − sik)

)
∈ F3 [x1, . . . , xn].

The polynomials m(si , sj) and p(si , sj) have the same supports, which are non-disposable sets of the data D. We can extend

the de�nition of concepts like (non-)disposable sets and min-sets to signed (non-)disposable sets and signed min-sets by keeping

track of whether sik < sjk or sik > sjk. We will discuss notation for this later, when we return to our running example. This time,

instead of a monomial ideal generated by the non-disposable sets, we can create a pseudomonomial ideal generated by the signed

non-disposable sets.

De�nition 5. Let D be a set of data. The ideal of signed non-disposable sets is

JΔcD =

〈
p(si , sj) | ti < tj

〉
.

The result of Theorem 4, that the generators of the primary components of the ideal of non-disposable sets are the min-

sets, follows immediately from the rich theory of Stanley-Reisner. There is no such established theory for pseudomonomials,

but the same result still holds for signed min-sets (Veliz-Cuba, 2012). There is one caveat though: we need to make the blanket

assumption to only consider unate functions.

Theorem 6 (Veliz-Cuba, 2012). The primary components of the ideal of signed non-disposable sets JΔcD are the signed min-sets
of D.



90 M. MACAULEY, R. ROBEVA

Let’s return to our example data set D = {(111, 0), (000, 0), (110, 1)} from the previous section, and Eq. (4). Since we are

keeping track of signs, it is crucial that these input-output pairs be ordered by non-decreasing output values. The �rst and third

input vectors di�er in only the last coordinate. Since 0 = t1 < t3 = 1 despite 1 = s13 > s33 = 0, the z-variable has a potential

negative in�uence, and so p(s1, s3) = z + 1. The second and third input vectors di�er in their �rst and second coordinates, with

0 = s21 < s31 = 1 and 0 = s22 < s32 = 1, and thus p(s2, s3) = (x − 1) (y − 1). Therefore, the ideal of signed non-disposable sets

of D, and its primary decomposition, found with the aid of a computational algebra software package, is

JD =

〈
p(s1, s3), p(s2, s3)

〉
= 〈z + 1, (x − 1) (y − 1)〉 = 〈x − 1, z + 1〉 ∩ 〈y − 1, z + 1〉.

It is often convenient to write a variable xi that has a negative in�uence as xi . Using this notation, the signed min-sets, i.e., the

signed support of a unate function that �ts the data must contain {x, z} or {y, z}. In other words, any unate function inMod(D)
must depend positively on x or y, but also negatively on z.

3.6 Model space structure
Thus far, we have seen how to determine which sets of variables functions in the model space can depend on. An even more bold

question is to determine the actual functions themselves, where each one is assumed to be a function of the form fi : F
n → F.

This problem gets di�cult quickly, because if F = Fp, there are pp
n

such functions on n nodes. However, often we might know

extra information that simpli�es the problem. For example, gene networks are often sparse (Andrecut and Kau�man, 2008),

and so individual functions might only have one or two inputs. For example, if geneA in a Boolean model is activated by enzyme

B but repressed by protein C , then there are only two possibilities for the function: it is either an AND gate or an OR gate, i.e.,

fA (B,C) = B ∧ ¬C = B(1 + C), or fA (B,C) = B ∨ ¬C = 1 + C + BC .

This is a very natural question to ask biologically. It is also a reverse-engineering problem, but this time we are reverse-engineering

the functions instead of the wiring diagram. In this section, we will characterize the model space algebraically. This was �rst

published in (Laubenbacher and Stigler, 2004), and (Robeva and Hodge, 2013, Chapter 3) contains a nice survey. It should be

noted that though this does not necessarily answer the model selection question of what the correct or best function that �ts the

data is, understanding the structure of the model space is a necessary �rst step.

Recall that the model spaceMod(D) consists of all local functions that �t the dataD, i.e., all f : Fn → F such that f (si) = ti
for each i. It is not hard to show that this set has a nice algebraic structure as

Mod(D) = f + I = {f + h | h ∈ I}, (7)

where f is any particular function that �ts the data, and I is the set of functions (an ideal) that vanish on the data. That is,

I = {h | h(si) = 0, for all i = 1, . . . , n}. One can think of the model space as being analogous to the solution space of an

inhomogeneous system of linear equations, Ax = b, which is x = xn + xp, where xn is the nullspace and xp is any particular

solution. Alternatively, it is analogous to the general solution of an inhomogeneous systems of ODEs x′ = Ax + b, which is

x(t) = xh (t) + xp (t), where xh (t) is the solution of the related homogeneous equation and xp (t) is any particular solution. In

both of these examples, the solution spaces are a�ne vector spaces. The model space in Eq. (7) has a similar structure and can be

thought of as an “a�ne ideal”.

The reverse-engineering problems we have seen thus far have all just focused on data for a single function, consisting of input

vectors and output values. The model space consists of the local functions that �t the data, and the min-sets are the minimal

supports from this space. However, once discretized, experimental gene expression data will typically consist of input-output

pairs of vectors in Fn, i.e.,

D =

{
(s1, t1), . . . , (sm, tm)

}
, si , ti ∈ Fn. (8)

Reverse-engineering the full wiring diagram requires performing the aforementioned min-set algorithm on all n nodes individ-

ually. In other words, the full data D in Eq. (8) can be broken up into n sets D1, . . . ,Dn of what we have been calling “data”,

where

Dk =
{
(s1, tk1), . . . , (sm, tkm)

}
. (9)

Naturally, we can de�ne the the model space of the set D from Eq. (8) as

Mod(D) =
{
f | f (si) = ti | for all i = 1, . . . ,m

}
.

This “full model space” can be found coordinate-by-coordinate; it is simply the set of n-tuples (f1, . . . , fn) that �t the data sets

D1, . . . ,Dn. That is,

Mod(D) = Mod(D1) × · · · ×Mod(Dn) = (f1 + I) × · · · × (fn + I) = (f1 . . . , fn) + In,
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where Mod(Dk) = fk + I , for any particular function fk that �ts the data Dk. Since there are pp
n

functions Fn → F, and Dk

speci�es the output form of the pn inputs, there are p choices for the remaining pn −m unknown output values. Therefore, the

model spaces have exactly ��
Mod(Dk)

��
=

��fk + I �� = ��I �� = pp
n−m

,

��
Mod(D)

��
= |I

��n
= pn(p

n−m)

functions.

3.7 Computation of model spaces
While it is nice to know that the algebraic structure of the model space of a data set Dk is Mod(Dk) = fk + I , that is really

only helpful if one also knows how to construct the functions. Fortunately, there are standard algorithms for constructing a

“particular function” fk, as well as the vanishing ideal I (Laubenbacher and Stigler, 2004). After introducing these, we will turn

our attention to which choice of particular function fk should be made, which is the model selection problem. Throughout, Dk

will be the data set from Eq. (9), but since we are �xing k, we will let ti = tki for convenience.

Let’s start with the vanishing ideal I . If we let Ii be the set (an ideal) of polynomials that vanish on a �xed input vector si ,
i.e.,

Ii =
{
h ∈ Q | h(si) = 0

}
,

then I is simply the intersection of the ideals I1, . . . , Im. That is,

I =
{
h ∈ R | h(si) = 0, for all i = 1, . . . , n

}
=

m⋂
i=1

Ii .

Constructing Ii is quite easy: if si = (si1, . . . , sin), then

Ii = 〈x1 − si1, . . . , xn − sin〉 =
{
(x1 − si1)h1 + · · · + (xn − sin)hn | h1, . . . , hn ∈ Q

}
.

For example, if si = (1, 0, 2),

Ii = 〈x − 1, y, z − 2〉 =
{
(x − 1)h1 (x) + yh2 (x) + (z − 2)h3 (x) | hi ∈ Q

}
,

and it is easy to see why all polynomials of this form vanish on the input x = (x, y, z) = (1, 0, 2). Computing a basis of the

intersection of all Ii is an easy task for any computer algebra software package.

Next, let us turn to the question about how to construct a particular solution fk that �ts the data Dk, i.e., a function

fk : F
n → F satisfying fk (si) = ti for each i = 1, . . . ,m. There are several methods to do this, and we will outline one that

resembles Lagrange interpolation. Speci�cally, for each input vector si , we construct an “indicator polynomial” χi (x), where

x = (x1, . . . , xn), that evaluates to 1 on si but to 0 on all other sj . That is,

χi (x) =
{
1 x = si
0 x = sj , j ≠ i.

(10)

There are many polynomials that satisfy the condition in Eq. (10), because we do not care about the value they take on inputs

that are not one of the si’s. One such construction for χi (x) in the Boolean case is done by the following steps.

1. Individually compare si to each sj , for j ≠ i.

2. For each sj ≠ si , pick any coordinate ℓ = ℓj in which they di�er, and encode this with xℓ − sjℓ .

3. Multiply all m − 1 of these terms together to get χi (x).

First, let’s observe why this works. If j ≠ i, then χi (sj) = 0 because plugging sj into the term xℓ − sjℓ yields zero. In contrast,

χi (si) ≠ 0 because for each j ≠ i, plugging si into xℓ − sjℓ is siℓ − sjℓ , which is nonzero due to Step (2).

The construction described above is more involved in the non-Boolean case, because while the product of m − 1 non-zero

terms over F2 is necessarily 1, this clearly fails for a more general prime �eld Fp. Speci�cally, each term (xℓ − sjℓ ) requires multi-

plication by (siℓ − sjℓ )p−2. The technical details of why this works is due to the Chinese remainder theorem from number theory,

which does not need to be discussed here.

Once we have the indicator polynomials at our disposal, it should be straightforward to see why the function

f (x) = t1χj (x) + t2χ2 (x) + · · · + tmχm (x) (11)
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�ts the data Dk = {(s1, t1), . . . , (sm, tm)}. Speci�cally, notice that if we plug si into f (x), then because χj (si) = 0 for j ≠ i,
Eq. (11) becomes f (si) = tiχi (si) = ti .

Let’s revisit our example and compute the model space of D = {(111, 0), (000, 0), (110, 1)}. Though we are working over

F2, it is often psychologically helpful to use negative signs. To begin, the ideals Ii that vanish on si for i = 1, 2, 3 are

I1 =
〈
x − 1, y − 1, z − 1

〉
, I2 =

〈
x, y, z

〉
, I3 =

〈
x − 1, y − 1, z

〉
.

The ideal that vanishes on all three of the inputs is thus I = I1 ∩ I2 ∩ I3. A computer algebra software package easily �nds that

{x + y, (y + 1)z} is a Gröbner basis for I , which means that

I =
〈
x + y, (y + 1)z

〉
=

{
(x + y)h1 (x) + (y + 1)z h2 (x) | h1, h2 ∈ Q

}
.

Next, to �nd a particular solution, we need to construct indicator polynomials χ1, χ2, χ3 that satisfy Eq. (10). We will do this

applying the algorithm described above to s1, s2, and then s3. Notice that there is some choice along the way, whenever two

input vectors di�er in more than one coordinate.

1. s1 = (1, 1, 1) di�ers from s2 in coordinate 1 (and 2, 3), and from s3 in coordinate 3, so

χ1 (x) = (x − s21) (z − s33) = xz.

2. s2 = (0, 0, 0) di�ers from s1 in coordinate 1 (and 2, 3), and from s3 in coordinate 2 (and 1), so

χ2 (x) = (x − s11) (y − s32) = (x − 1) (y − 1) = (x + 1) (y + 1).

3. s3 = (1, 1, 0) di�ers from s1 in coordinate 3, and from s2 in coordinate 2 (and 1), so

χ3 (x) = (z − s13) (y − s22) = (z − 1)y = y(z + 1).

These indicator functions generate a particular solution

f (x) = t1χ1 (x) + t2χ2 (x) + t3χ3 (x) = 0 · xz + 0 · (x + 1) (y + 1) + 1 · y(z + 1) = y(z + 1).

Thus, the model space of the data set D is

Mod(D) = f + I = y(z + 1) +
〈
x + y, (y + 1)z

〉
, (12)

and this contains exactly 2
2
3−3

= 2
5
= 32 functions.

3.8 Model selection
The goal of reverse-engineering a local function from a set of data is not to �nd just any function that �ts the data, but to �nd

the “best”, “most correct”, or “most likely” such function. If we express the model space as Mod(D) = f + I , then how do we

choose such a function?

One answer would be to just pick f , but is that really the best answer biologically? Especially because there was a good deal

of choice in constructing it. Another answer is to make an Occam’s razor assumption and choose the simplest or “most reduced”

function that �ts the data. But what does this mean, and how would one �nd it?

As an analogy to motivate this, let us return to two mathematical equations whose solution space also has an a�ne structure.

For example, the general solution to the ODE y′′ + y = 2 is

y(t) = C1 cos t + C2 sin t + yp (t),

where yp (t) is any particular solution. Though there are in�nitely many choices for yp (t), such as yp (t) = 2 cos t−5 sin t+2, the

canonical choice is yp (t) = 2. Loosely speaking, if we start with yp (t) = 2 cos t − 5 sin t + 2, then we can reduce it by repeatedly

taking away multiples of cos t and sin t, which are solutions to the homogeneous equation, until we are left with a remainder of

yp (t) = 2.

For a second example, consider the system of linear equations[
2 1 3

3 −5 −2

] 
x
y
z

 =

[
4

6

]
.
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The set of solutions is x = xn + xp, where xn = C [1 1 −1]T is the nullspace, and xp is any one particular solution. It is easy

to check that xp = [10 8 −8]T is one such solution, though that is not the canonical solution. If we reduce it by taking away

multiples of [1 1 −1]T , we can get a simpler particular solution, xp = [2 0 0]T .

Returning to the model selection problem, given Mod(D) = f + I , how do we simplify or fully reduce f ? One answer

comes from computational algebra, by computing the Gröbner normal form of f . Loosely speaking, given a Gröbner basis G,

the Gröbner normal form is the polynomial achieved by repeatedly taking away polynomials in G from f , analogous to the two

examples above from ODEs and linear algebra. There are a number of technical details that we will not get into, but these can

be found in (Cox et al., 2015). The easy answer for how to do this is to just use a computational algebra software package.

A more subtle issue is that the normal form depends on the choice of monomial term order, which speci�es how to order

monomials of multivariate polynomials so one can perform long division. For polynomnials of a single variable, there is only

one choice: 1 ≺ x ≺ x2 ≺ · · · . However, in the multivariate case, it is not so clear what the relative order of monomials such

as, e.g., x3, xy2, and y5 should be. The short answer is that there are multiple choices that work, but they often lead to di�erent

Gröbner bases, and hence di�erent Gröbner normal forms. Though there are uncountably many monomial orders, there are

only �nitely many (reduced) Gröbner bases of any ideal, and these can be characterized geometrically by the polyhedral Gröbner
fan of the ideal. Loosely speaking, the relative volumes of the regions describe the prevalence of that particular Gröbner basis.

Gröbner fans have been used for model selection in (Dimitrova et al., 2007), but there are other methods as well.

Let’s continue our running example from the previous section and the model space Mod(D) from Eq. (12). Our algorithm

gave us a particular solution of f = y(z+1), which was one of the 32 functions inMod(D). It turns out that the Gröbner normal

form
1

of f is NF(f ) = y + z. This means that an alternative way to write the model space, with a “fully reduced” representative

particular solution, is

Mod(D) = f + I = NF(f ) + I = y + z +
〈
x + y, (y + 1)z

〉
=

{
y + z + (x + y)h1 (x) + (y + 1)zh2 (x) | h1, h2 ∈ Q

}
.

Another answer to the model selection problem is to try to select functions that agree with known biological information.

For example, perhaps a certain interaction is known, and so only functions where that variable appears will be considered. One

could search for functions by carefully selecting the coordinate ℓ in the construction of the indicator functions when possible,

or by computing the Gröbner normal form for various monomial orderings and selecting one that has the known variable(s).

In other cases, it is not the variables, but rather the functions of a certain type that are given preference, because certain

functions are deemed to be more “biologically relevant” than others. One such class are the canalizing functions (Waddington,

1942), and especially the nested canalizing functions (Kau�man et al., 2003). Loosely speaking, a function f : Fn → F is canal-

izing if it depends on a variable xi for which taking a speci�c value completely determines the function’s output. In other words,

there is some a ∈ F, for which xi = a implies that f (x) = b for some b ∈ F. On the other hand, if xi ≠ a, then the output is

some function on n − 1 variables, and we can ask whether or not that function is canalizing. Repeating this process leads to the

notion of canalizing depth, and functions with “full depth” are called nested canalizing (He and Macauley, 2016). An example

of a nested canalizing function on three variables is f = x ∧ (y ∨ z). The prevalence of canalization in biological networks has

been well-studied (Daniels et al., 2018). It has been suggested (Harris et al., 2002), with recent supporting evidence (Kadelka,

2020), that “most” functions that appear in models of molecular networks are nested canalizing, or at least close.

Examples of nested canalizing functions include products of variables and their negations. One of these, written in both

Boolean logical form and polynomial form, is

f (x, y, z) = x ∧ y ∧ z = x(y + 1) (z + 1) = x y z.

The last way to express the polynomial above, as f = x y z is in some sense a hybrid of Boolean and polynomial form, but it

motivates the use of the term pseudomonomial. Informally, the function f “is a monomial” in the “variables” x, y, z, x, y, z.

(This can be formalized by an operation called polarization (Güntürkün et al., 2019), which we will discuss later.) General

nested canalizing functions have a more complicated structure than this, but in some sense, they are built recursively from these

pseudomonomials. It is interesting that this concept of a pseudomonomial, which does not seem to be prevalent in classical

mathematics at all, has already arisen in two very di�erent problems involving algebraic models in mathematical biology.

3.9 Control of molecular networks
So far, we have examined how algebraic models can be constructed, how they can be used to determine the system’s attractors,

and how those attractors may be viewed as representing biologically meaningful states (e.g., a healthy state vs. a diseased state,

di�erent cell fates or system behaviors). Once a mathematical model of a molecular system is developed and validated, a major

1
with respect to the standard default monomial ordering, grevlex
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goal is to employ the model to suggest ways for control and for designing interventions (e.g., gene knockout, sustained external

signals, protein synthesis inhibition) to drive a system into an attractor that corresponds to a desirable biological state. At this

stage, the model can also assist, e.g., with determining signaling pathways or with identifying subsets of nodes and interactions

most relevant to the system function(s).

The connection between network structure, type of interactions, and stabilization is complex and not completely under-

stood, even though this �eld has attracted considerable interest in the last few decades. However, successful strategies have been

designed for identifying control targets (Murrugarra et al., 2016), controlling gene regulation (Li and Wang, 2017; Murrugarra

and Dimitrova, 2015), cell fate control (Zañudo and Albert, 2015), stem cell programming (Yachie-Kinoshita et al., 2018), and

disruption of oncogenic pathways (Sordo Vieira et al., 2020), among many others. In general, the question is how to determine

interventions to drive the systems into desirable states and away from those leading to disease or disadvantage. There is a rich

arsenal of algebraic approaches, including some based on structures that we have already seen. For example, in (Murrugarra and

Dimitrova, 2015), the authors propose a technique based on canalization and two types of control actions: edge deletion and

constant expression of edges. In (Murrugarra et al., 2016), the authors translate the problem of �nding control candidates into

the problem of solving a system of polynomial equations, and then employ computational algebra techniques to �nd such con-

trollers. The latter approach is based on �nding a Gröbner basis, similar to what we did in Section 3.6. These control strategies

have been validated on well-studied examples, e.g., the p53-mdm2 network (Choi et al., 2012), a mammalian cell cycle network

(Fauré et al., 2006), and a blood T cell lymphocyte granular leukemia survival signaling network (Saadatpour et al., 2011).

Graph-theoretic techniques provide another way for identifying the attractors of a system and developing control strategies.

Speci�cally, in a series of publications, Albert, Zañudo and collaborators use a so-called “expanded network of interactions” for

a system to encode the Boolean update rules in addition to the network topology. The expanded network is constructed by

introducing additional nodes in a way that makes it possible to re�ect the precise nature of multiple inputs, thus combining

both the structure and function of molecular interactions (resolving in particular, the OR/AND ambiguity that is inherent to

wiring diagrams). We refer the reader to (Zañudo and Albert, 2013) for the speci�cs. Chapter 4 in (Robeva, 2015) also contains

multiple examples.

The problem of stabilization in network control is to determine properties of the network and/or external interventions

that would (i) guarantee that the network or some of its vital components settle in certain states regardless of the system’s initial

conditions, and then (ii) use its strongly connected components to identify stable motifs—network components that stabilize

in a �xed state. In (Yang et al., 2018) and (Zañudo and Albert, 2015), for example, the authors provide algorithms that could

drive a system, through transitions between stable motifs, into a desirable system attractor. Other approaches to controlling

Boolean models include matrix methods and semi-tensor products (Li and Wang, 2017; Liu et al., 2016; Zhong et al., 2017),

integer programming (Qiu et al., 2014), and genetic algorithms (Vera-Licona et al., 2013), among many others.

Furthermore, large biological networks are known to exhibit inherent modularity—that is, a speci�c function of the cell,

tissue, system, or organism that is performed by a speci�c set of interactions responsible for its proper execution. In many cases,

after the mechanism of such interactions is well-understood, this network may be encapsulated as a module and included in

a larger model as a “black box" for which certain sets of inputs produce outputs representing proper biological signaling and

function. The interdependence of these functions could then be represented by aggregate networks of modules describing their

combined and interconnected behavior. When the outputs from one of the modules are considered as inputs for another, Chaves

and Tournier (2018) have shown that the attractors of the resulting interconnected network may be constructed only from the

set of attractors of the modules. This synthetic approach underscores once again the importance of �nding control strategies

that drive each module into a desirable attractor, which would in turn allow for controlling the interconnected system.

Circling back to the question of update regimes, we should stress that di�erent methods for analysis and control may work

for certain update schemes and not for others—e.g., among the approaches mentioned above, the analysis and control methods

based on the study of stable motifs in (Yang et al., 2018; Zañudo and Albert, 2015) and those for interconnected Boolean net-

works in (Chaves and Tournier, 2018) apply to asynchronous stochastic updates, whereas the results for feedback stabilization

control in (Li and Wang, 2017) have been proven to work only for deterministic update schemes.

The use of asynchronous updates is not the only way to introduce stochasticity in logical models. Shmulevich et al. (2002)

introduced probabilistic Boolean network (PBN) models by allowing multiple regulatory functions for each node. Which func-

tion is used to update that node at each step is determined by a probabilistic distribution on the inputs (predictors) and the

modeling process is about the choice of update rule on each iteration. A di�erent strategy was used in 2007 where Ribeiro and

Kau�man (2007) considered noisy Boolean networks for which the state of a node �ips from 0 to 1 and vice versa with a certain

probability p independent from the other nodes. Yet another type of algebraic model, the so-called stochastic discrete dynamical

systems (SDDS), was proposed in 2012 by Murrugarra et al. (2012). These model stochasticity at the functional level by intro-

ducing two update probabilities, p↑ and p↓, for each node. The parameter p↑ gives the probability of updating the node when it

would produce a positive change (activation), that is, if the update makes the variable increase its value from 0 to 1. Likewise, the

parameter p↓ gives the probability of updating the node when it makes the variable change its value from 1 to 0. This framework

allows for an activation or inhibition determined by the update rule to be forgone due to stochasticity. In general, all of the
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aforementioned types of models can be analyzed and controlled by using various algebraic strategies.

Another group of models, the so-called agent-based or individual-based models (ABM, IBM) of biological systems, has also

bene�ted from the use of algebraic approaches to describe such models mathematically and design control strategies. ABMs

feature a (usually large) set of discrete interactive components, called agents, rather than interactions between homogeneous

compartments/populations. Each agent’s spatiotemporal dynamics are determined by a �nite number of rules that depend on

the state of the agent, as well as those of other agents and their environment. ABMs have been used to model complex systems at

all levels of biological organization—from molecular interactions to communities and ecosystems. Their main advantages over

the so-called equation-based models are that they can be used to model heterogeneous systems and can produce a large diversity

of system behaviors emerging from relatively small sets of local interaction rules—see, e.g., (Railsback and Grimm, 2019). The

use of ABMs for simulating systems of interactive components has a long history—a good summary for their use in biology

could be found in (Trexler et al., 2011, Chapter 12).

As with all other types of models discussed so far, the question of how to �nd a set of inputs for an ABM that achieves a

speci�c outcome is of particular interest. This may be challenging, as determining a system’s drivers toward desired behaviors in

an ABM is not completely understood. In fact, until Grimm et al. (2006, 2010) introduced a standard protocol for mathemati-

cal descriptions of ABMs (the so-called ODD protocol—for Overview, Design concept, Detail), there was no broadly-accepted

norm for a mathematical encoding of ABM models, pretty much leaving the use of repeated simulations as a sole methods for

their analysis. Subsequently, an ODD extension proposed in (Hinkelmann et al., 2011) allowed for recasting ABMs as polyno-

mial dynamical systems that preserve the models’ features while providing tools from computational algebra for their analysis.

An introduction to this strategy for optimal control of ABMs, together with examples, can be found in (Robeva and Hodge,

2013, Chapter 5). The perspective article by An et al. (2017) examines and references other systems-level control approaches for

ABMs. Still, a comprehensive solution to the optimal control problem for ABMs is still lacking.

In summary, the �eld of network control is yet another rapidly expanding area of research where algebraic biology plays an

important role. Advancements in molecular biology, coupled with algebraic models and increased computational power, hold

signi�cant promise for future medical breakthroughs—from �nding cures for diseases, to designing targeted interventions in

signaling systems, to moving us closer to personalized medicine.

4 Inferring place fields in neuroscience

The theme in the previous section of this paper was how algebraic structures arise in models of molecular networks. In particular,

we saw how computational algebra is well-suited for solving certain inverse problems. This mathematical framework involves

polynomial rings over �nite �elds, their ideals, and corresponding algebraic varieties. Along the way, we encountered Gröbner

bases, square-free monomial ideals, simplicial complexes, and primary decompositions. A new object called a pseudomonomial

arose in various settings, and this led to the concept of a pseudomonomial ideal, and a generalization of some of the ideas of

the classical Stanley-Reisner theory. This is a �rsthand example of how biology can indeed lead to new mathematics (Sturmfels,

2005). In this section, we will survey a very di�erent biological application—one coming from neuroscience, where all of the

aforementioned mathematical structures and concepts also arise.

4.1 Place fields as binary codes

Place cells are types of neurons located in the hippocampus, and they �re when an animal enters a particular region in space,

called a place field. These place �elds are generally overlapping and two-dimensional, and so they somewhat resemble a Venn

diagram. As such, when an animal moves around, di�erent subsets of place cells collectively �re in its brain. The location and

shape of the speci�c place �elds are not known, so one goal is to infer, or reverse engineer their structure, from experimental data.

This is another instance of an inverse problem. And like the inverse problems that we saw in the previous section involving

molecular networks, an algebraic framework is a natural way to analyze it. An example of a collection of �ve place �elds is shown

in Figure 2.

As an animal moves around its environment, typically an enclosure such as a room or cage, data of which neurons are �ring

can be collected at various points in time. Curto et al. (2013) proposed studying the structure of place �elds from a coding

theory perspective. If there are n place cells, then this experimental data can be represented as a collection of binary vectors or

strings of length n. Such a collection is called a neural code, and denoted C. The elements of C are called codewords, and they are

usually written as a vector c = (c1, . . . , cn) or just as a string c = c1c2 · · · cn. Binary strings of length n that are not in C are called

non-codewords.

Every collection U = {U1, . . . ,Um} of place �elds canonically generates a code C (U ). Loosely speaking, each nonempty

region in the “Venn diagram” of the place �elds de�nes a codeword, with ci = 1 if that region is contained in Ui and ci = 0
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U1 U2

U3

U4

U5

Figure 2: A collection U = {U1,U2,U3,U4,U5} of �ve place �elds. Each of the regions can be canonically represented by a

binary string c = c1c2c3c4c5 called a codeword, and the set of all such strings is its code, C (U ).

otherwise. For example, the code de�ned by the place �elds in Figure 2 is

C (U ) =
{
00000, 10000, 01000, 00100, 00001, 11000, 10100, 10010,

01100, 01001, 11100, 11001, 10110, 01101, 11101

}
.

Notice how the diagram of place �elds in Figure 2 actually has 16 “regions”, but two of them correspond to the same codeword,

c = 01000, because the subset of U2 that is disjoint from the other Ui’s is disconnected.

We say that a code C can be realized if there is some collection U of place �elds for which C (U ) = C. It is not too hard

to show that every code can be realized if we place no restrictions on the dimension of the ambient space, or on the structure

of the place �elds—not requiring them to be open, convex, or even connected. However, such a construction is completely

detached from the original biological problem from which they arose. Place cells in rats were discovered in the early 1970s by

O’Keefe, and this work earned him a Nobel Prize in 2014 (O’Keefe and Dostrovsky, 1971). Place cells were later found in other

rodents and primates (Hori et al., 2005), including humans (Ekstrom et al., 2003). Since these animals do not �y, their place

�elds are regions in two-dimensional space, and they also end up generally being convex. This provides a strong restriction on

the structure of place �elds, and it makes the question about which codes are realizable more complex. Though there has been

experimental evidence demonstrating three-dimensional place �elds in bats (Geva-Sagiv et al., 2015), we will assume throughout

that all place �elds are two-dimensional.

One of the �rst major mathematical problems in this new �eld was to characterize which neural codesC are convex realizable,

especially in two dimensions (Curto et al., 2017). For a few years, there was a thrust to characterize this property algebraically

(Cruz et al., 2019; Curto et al., 2019), as we will soon see how every code can be represented with a pseudomonomial ideal, called

a neural ideal. A good deal of progress was made along these lines, though necessary and su�cient conditions remained elusive.

Recently, it was shown using the theory of oriented matriods that this problem is NP-hard (Kunin et al., 2020). Despite this,

there are still many open problems about convex realizability. There has also been a lot of interest in studying neural ideals and

the associated combinatorics on their own right. Indeed, much of the current research along these lines lacks direct connections

back to the original problem from neuroscience. Rather, it involves a rich mathematical theory drawing from ideas in geometric

and algebraic combinatorics, topology, commutative algebra, algebraic geometry, category theory, and theoretical computer

science. Despite this, there are still researchers who use this framework for studying problems in neuroscience. This is another

example of how biology can inspire entirely new problems and sub�elds in mathematics.

4.2 Pseudomonomials of codewords
Recall from the previous section on algebraic models how the disposable sets with respect to a set D of data form a simplicial

complex. The corresponding Stanley-Reisner ideal is generated by the non-disposable sets, and its primary decomposition de-

scribes the min-sets. Furthermore, this can be extended to signed min-sets, using pseudomonoimal ideals, and the underlying

mathematical theory still holds. A similar construction can be done for neural ideals, but the algebraic and combinatorial struc-

tures have di�erent interpretations. It is interesting that pseudomonomials arise in both settings, whereas they seem to not really

have been studied much before the emergence of algebraic biology in the 21st century.

As we did with a data set D in the setting of algebraic models, we can similarly encode neural code data with pseudomono-

mials. These are a little di�erent, because this time, every variable will appear in every polynomial. Speci�cally, every codeword
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c has a characteristic polynomial χc (x), where x = (x1, . . . , xn), such that

χc (x) =
{
1 x = c
0 x ≠ c.

It is not hard to see how to construct such a pseudomonomial: include xi if ci = 1 and (xi − 1) if ci = 0, and then multiply

these all together for i = 1, . . . , n. The support of a codeword c is de�ned to be the coordinates in which ci = 1. Biologically, the

support describes a set of neurons that �re together.

At this point, we have not speci�ed which �eld the polynomials are over. If we use F2, then xi − 1 = xi + 1, which we can

abbreviate as xi for “NOT xi .” Despite this, there is undeniably something psychologically pleasing about using xi − 1, because

it makes it clear that xi = 1 is a root. As an example, the characteristic polynomial of c = 011001 over F2 is

χc (x) = (x1 − 1)x2x3 (x4 − 1) (x5 − 1)x6 = x1x2x3x4 x5x6.

Once again, if we express χc (x) in a “hybrid” Boolean logic and polynomial form, as on the right above, we see the motivation

for the term “pseudomonomial”—it is a monomial in the xi’s and xi’s. As before, this can be formalized via an operation called

polarization, basically considering each xi as a new variable, yi ; see (Güntürkün et al., 2019).

4.3 Rings and ideals of neural codes
Now, we are ready to de�ne some basic algebraic objects arising from a neural code C. The �rst is its vanishing ideal,

IC =

{
f ∈ F2 [x1, . . . , xn] | f (c) = 0 for all c ∈ C

}
.

Notice that for any non-codeword n ∉ C, the characteristic polynomial χn (x) vanishes on all c ∈ C. Therefore, the ideal

generated by all of these polynomials is contained in the vanishing ideal IC . We call this the neural ideal of C, denoted

JC =

〈
χn (x) | n ∉ C

〉
⊆ IC .

Another ideal that is trivially contained in the vanishing ideal is the set of all polynomials that vanish on every Boolean vector.

This is called the Boolean ideal,

B =

{
b ∈ F2 [x1, . . . , xn] | b(x) = 0 for all x ∈ Fn

2

}
=

〈
xi (1 − xi) | i = 1, . . . , n

〉
.

Recall that we have seen this ideal in the previous section, in Eq. (1) for the case p = 2. The ring R = F2 [x1, . . . , xn] is the set of

all Boolean polynomials, and since x2i = xi , the quotient ring Q = R/B is the set of all Boolean functions.

It turns out that the vanishing ideal is generated by the generators of the neural ideal JC ⊆ IC and the Boolean ideal B ⊆ IC .

In other words,

IC = JC +B =

〈
{χn (x) | n ∉ C} ∪ {x2i − xi | i = 1, . . . , n}

〉
for any code C. The proof of this uses a version of Hilbert’s Nullstellensatz for �nite �elds, sometimes called the strong Nullstel-
lensatz. For details, see the Appendix of (Curto et al., 2013).

One more algebraic structure that is used for analyzing neural codes is called the neural ring, which is the quotient

RC = F2 [x1, . . . , xn]/IC .

This is a quotient of the ring F2 [x1, . . . , xn]/B of all Boolean functions Fn
2
→ F2. Speci�cally, if we associate C ⊆ Fn

2
, then the

neural ring RC can be thought of as the set of all functions C → F2.

4.4 Simplicial complexes of neural codes
Thus far, we have been writing neural codes as collections of binary strings. Since each such string canonically describes a subset

of [n] = {1, . . . , n}, we can think of a code C alternatively as a collection of subsets. This is not necessarily a simplicial complex

because it is does not need to be closed under taking subsets. However, it generates a simplicial complex if we throw in all

codewords corresponding to subsets. Speci�cally the simplicial complex of a code C is de�ned as

Δ(C) =
{
α ⊆ [n] | α ⊆ c for some c ∈ C

}
.

Every simplicial complex is determined by its maximal faces (also called facets), which describe the maximal subsets of neurons

that �re together. Equivalently, these are the maximal subsets of place �elds that have nonempty intersections. In topology,
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U ′
1

U ′
2

•
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2

Figure 3: At left is a realization of the code C = {01, 11}, and at right is its simplicial complex Δ(C) = {00, 10, 01, 11}. In the

middle is a di�erent collection of place �elds with the same simplicial complex.

every open cover de�nes a simplicial complex called its nerve in this manner. In this setting, nerve of a collection U of place

�elds describes the set of all nonempty intersections in any realization of U . Formally, this is the set

N (U ) =
{
α ⊆ [n] |

⋂
i∈α

Ui ≠ ∅
}
.

It is easy to verify that the simplicial complex of a code is simply the nerve of any of its realizations, i.e., Δ(C) = N (U ). As an

example of this, consider the code C = {01, 11}, which does not describe a simplicial complex because it is missing 00 and 10. A

realization of C is shown on the left in Figure 3, and at right is the simplicial complex Δ(C) = N (U ).
Notice that di�erent codes may have the same simplicial complex. For example, we can throw in 00 to the code on the left

in Figure 3 without changing the simplicial complex; this would represent expanding the stimulus space to the complementU c
2

.

Of course, there is no way to include 10 in the code without fundamentally changing the place �elds to a con�guration such as

the one shown in the middle of Figure 3, which has the same simplicial complex.

4.5 Receptive field relationships
At this point, we have seen how a neural code can be described algebraically by pseudomonimal ideals, or combinatorially by its

simplicial complex and nerve. Our goal is to tie these di�erent viewpoints together, via the primary components of the neural

ideal, much like what was done for algebraic models earlier in this paper.

First, notice how certain combinatorial features of the place �elds are encoded by algebraic relationships. For example, if

c1 = c2 = 1 for some c ∈ C, then we can conclude that U1 ∩U2 ≠ ∅. This is called a receptive field (RF) relationship, introduced

in (Curto et al., 2013). For another example, if c1 = 1 implies that c2 = 1, then U1 ⊆ U2, like the example on the left in Figure 3.

RF relationships can be deduced algebraically as well. Recall that the neural ideal JC is generated by the characteristic poly-

nomials χn (x) of the non-codewords n. This means that χn (c) = 0 for any c ∈ C, and hence, f (c) = 0 for any polynomial

f ∈ JC . Suppose we have a polynomial

r(x) = x1 (1 − x2) ∈ JC .

Since r(c) = 0 for any c ∈ C, then if c1 = 1, it must be the case that c2 = 1. This is a way to capture the RF relationship that

U1 ⊆ U2 algebraically.

The example above generalizes from two coordinates to arbitrary subsets. For σ ⊆ [n], let xσ =

∏
i∈σ

xi . Next, for disjoint

subsets σ and τ, let pσ ,τ be the pseudomonomial that is the product of all of the variables xi from σ and terms (1 − xj) from τ.

That is,

pσ ,τ (x) = xσ
∏
j∈τ
(1 − xj).

It is easy to check that pσ ,τ (x) ∈ JC if and only if ⋂
i∈σ

Ui ⊆
⋃
j∈τ

Uj , (13)

where the empty intersection is the entire stimulus space X , and the empty union is ∅. There are two special cases of this,

corresponding to σ or τ being empty:

1. pσ ,∅ (x) = xσ ∈ JC if and only if

⋂
i∈σ

Ui = ∅;

2. p∅,τ (x) =
∏
j∈τ
(1 − xj) ∈ JC if and only if

⋃
j∈τ

Uj ⊇ X .
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An example of (1) can be found in Figure 2, with σ = {1, 2, 4} ⊆ [5]. By de�nition, JC containing pσ ,∅ (x) = x1x2x4 means

pσ ,∅ (c) = 0 for all c ∈ C. Equivalently, no word in C has the form c = 11c31c5, because U1 ∩ U2 ∩ U4 = ∅.

Let’s consider an example of (2) with τ = {1, 2}. Here, JC containing p∅,τ (x) = (1 − x1) (1 − x2) means p∅,τ (c) = 0 for all

c ∈ C. Equivalently, no word in C has the form c = 00 · · · . That is, every point in the stimulus space X is either in U1 or U2, so

X ⊆ U1 ∪ U2. We saw an example of this on the left in Figure 3.

4.6 Canonical forms and primary decompositions
We say that a pseudomonomial JC is minimal if there is no lower-degree pseudomonomial in JC that divides it. In some sense,

these describe minimal intrinsic RF relationships.

De�nition 7. The canonical form of JC , denoted CF(JC), is the set of minimal pseudomonomials in JC .

Theorem 8. Every neural ideal is generated by its canonical form, i.e., JC = 〈CF(JC)〉.

It should be noted that while elements in canonical forms describe minimal RF relationships, there are other intrinsic rela-

tionships that do not arise in this manner. Garcia et al. (2018) found additional RF relationships by studying the Gröbner bases

of neural ideals.

An algorithm for computing the canonical form of a neural ideal was given in (Petersen et al., 2018). Alternatively, the

canonical form can be constructed from the primary decomposition of JC (Curto et al., 2013). We will brie�y summarize the

construction here. Each primary component is an ideal generated by linear terms: some xi’s and some other (1 − xj)’s, with

no variable appearing in both, and some xk’s possibly not appearing at all. We can encode these three possibilities with ai = 0,

aj = 1, and ak = ∗, respectively, and thus describe each primary component with a length-nword a ∈ {0, 1, ∗}n. In other words,

the primary ideal de�ned by a ∈ {0, 1, ∗}n is

pa =
〈
xi − ai | ai ≠ ∗

〉
=

〈
{xi | ai = 0}, {1 − xj | aj = 1}

〉
.

The primary decomposition of the neural ideal JC thus has the form

JC =

⋂
a∈A

pa, (14)

for some collection of words A ⊆ {0, 1, ∗}n. The canonical form of JC is the set of its minimal pseudomonomials, and this can

be constructed from this primary decomposition, which can easily be found with a computational algebra software package.

Speci�cally, let P be the set of pseudomonomials formed by taking the product of at most one linear term from each pa. The

minimal pseudomonomials of this set is precisely CF(JC).
In Stanley-Reisner theory, the primary decomposition connects the algebraic “factorization” of a square-free monomial ideal

with the combinatorial structure of the associated simplicial complex. Via polarization (i.e., replacing each 1−xi with yi), a pseu-

domonomial ideal becomes a square-free monomial ideal inF2 [x1, . . . , xn, y1, . . . , yn], and the corresponding simplicial complex

is called the polar complex (Güntürkün et al., 2019). This is related to an object called the factor complex (de Perez et al., 2020),

which is the simplicial complex of the ideal de�ned by polarizing the primary components in Eq. (14). Though Stanley-Reisner

theory does not apply directly to pseudomonomials, many tools can still be used to uncover combinatorial relationships in the al-

gebra, and vice-versa, leading to new structure theorems in algebraic models of molecular networks, mathematical neuroscience,

and pure mathematics.

5 Closing remarks
In this paper we chose to present two very di�erent examples from biology and how they can be examined through the lens of

pseudomonomials. These are two examples from the growing �eld of algebraic biology, a discipline with a repertoire that also

features alternative approaches based on graph theory, linear algebra, algebraic statistics, algebraic geometry, and many others

(Macauley and Youngs, 2020). In addition, stochastic treatments can lead to probabilistic models, including Markov and semi-

Markov processes. The three edited volumes (Robeva, 2015; Robeva and Hodge, 2013; Robeva and Macauley, 2018) may be

used as an entry point to its rich toolkit, as they present a variety of biology problems bene�ting from the vast arsenal of algebraic

and combinatorial tools, including, e.g., food chains, multi-scale biomolecular structures, RNA and DNA rearrangements, bio-

chemical reaction networks, multistationarity of biological systems, neural network dynamics, phylogenetics, metabolic path-

ways, evolutionary landscapes, quantitative traits analysis, and the spread of infectious diseases on networks, and many others.

The recent collection of papers published as a special Research Topic of Frontiers in Physiology titled “Logical modeling of cel-

lular processes: from software development to network dynamics” (Barberis and Helikar, 2019) is yet another great resource on

algebraic models.
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In closing, we reiterate that the �eld of algebraic biology has expanded tremendously in the last decade and is now a booming

area of active research. This paper provides a glimpse into the �eld through topics where authentic questions from biology may

be answered in the language of pseudomonomials, tying together two unrelated sub�elds in a way that had not been done

before in the literature. Our hope is that the reader will be intrigued and inspired to explore the literature independently—the

references included in this article and beyond—and to further discover how the symbiosis of mathematics and biology drives

new discoveries in each of these �elds.
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