
Weekly schedule: Math 9850, Fall 2024
Algebraic Systems Biology

• WEEK 1: 8/21–8/23.

– Wed. August 21: We gave a brief history of mathematical biology, and asked
what algebra (linear and nonlinear) has to do with biology? We saw a sim-
ple example of a biochemical reaction network, and how it define a system of
nonlinear ODEs under the assumption of mass-action kinetics. We read over
Michael Reed’s 2015 article on Mathematical biology is good for mathematics,
and covered the What is algebraic biology?” slides, pp. 1–14.

Suggested reading : M.C. Reed. Mathematical biology is good for mathematics.
Notices of the AMS, 62(10): 1172–1176, 2015.

– Fri. August 23: We covered the second and third algebraic biology topics.
First, we discussed the emergence of algebraic statistics since the turn of the
century. This is especially useful for problems involving discrete probability,
with genomics and phylogenetics as examples. We also mentioned the newer
fields of topological data analysis, and what persistence homology is all about.

Next, the third of three topics is algebraic neuroscience. Neural binary codes
are defined by regions of place fields, and a challenging problem is to recon-
struct the regions just from the code. These regions can be described combi-
natorially, geometrically, and algebraically. The latter is done with so-called
neural ideals, which are generated by pseudomonomials. This has opened up
a whole new area of mathematics in the past decade, which likely would not
have been considered without the biological application.

Finally, we just started the topic of modeling gene regulatory networks. We
introduced the lactose (lac) operon in E. coli, which controls the genes for the
transport and metabolism of lactose sugar in the cell. We described the bio-
logical processes, how these can be written as biochemical reactions, and the
resulting system of differential equations. In a few weeks, we’ll explore this in
a lot more detail. We covered the What is algebraic biology?” slides, pp. 15–27.

Suggested reading : M. Macauley. A case for algebraic biology: from research
to education. Bull. Math. Biol., 82(115), 1829–1852, 2020.

• WEEK 2: 8/26–8/30.

– Mon. August 26: We continued our preview / overview with models of the
lac operon. Starting with a published 5-variable ODE models, we discussed
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the concept of bistability, and how this model exhibits it. Next, we showed
how Boolean models are an alternative framework. As a teaser, we saw some
how computational algebra can be used to solve reverse engineering problems,
such as the popular network inference problem in systems biology.

Suggested reading : R. Laubenbacher and B. Sturmfels. Computer algebra in
systems biology. Amer. Math. Monthly 116(10): 882–891, 2009.

– Wed. August 28: We spent most of the day with class introductions, before
moving into chemical reaction networks. We discussed the law of mass-action
kinetics, and showed how to derive a system ODE from checmical reaction
network under this assumption. We covered the Chemical reaction networks”
slides, pp. 1–6.

Suggested reading : Sections 1–2 of A. Dickenstein. Biochemical reaction net-
works: an invitation for algebraic geometers. Mathematical Congress of the
Americas. Contemp. Math. 656: 65-83, 2015.

– Fri. August 30: We saw the classic Michaelis-Menten equation for an enzyme-
substrate chemical reaction, and derived and analyzed the solution. Next, we
considered the “higher order” case when the enzyme-substrate complex is ESn

rather than just ES. The solutions are Hill functions, and we discussed several
variants, such as when a single enzyme catalyzes multiple reactions, or when
the enzyme-substrate complex ES2 forms in two sequential steps. We covered
the Chemical reaction networks” slides, pp. 7–17.

Suggested reading : Sections 3–5 of A. Dickenstein. Biochemical reaction net-
works: an invitation for algebraic geometers. Mathematical Congress of the
Americas. Contemp. Math. 656: 65-83, 2015.

• WEEK 3: 9/2–9/6.

– Mon. September 2: Labor day (no class)

– Wed. September 4: We reviewed the central dogma from molecular biology—
the 2-step process of transcription (mRNA synthesis) and translation (protein
synthesis). Next, we talked about operons, which are clusters of genes that
are co-transcribed, and are primarly found in prokaryotes. We reviewed the
lac operon in E. coli, which controls the genes responsible for the transport
and metabolism of lactose. This is an inducible operon because it is off by
default. In contrast, the trp operon is repressible, because it is on by default.
We discussed the lac operon in more details than before, and included the
catabolite repression mechanism, which inactives the promotor when glucose,
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the prefered sugar, is present. We covered the entirity of the Gene regulation
by operons” slides, pp. 1–15.

Suggested reading : Robeva/Hodge (2013), Chapter 1: Mechanisms of Gene
Regulation: Boolean Network Models of the Lactose Operon in Escherichia
coli, by R. Robevea. Sections 1.1–1.2, pp. 1–6.

– Fri. September 6: We discussed bistability and how it is exhibited in the
lac operon, under medium levels of lactose concentration. Next, we began de-
veloping a model of the lac operon using delay differential equations (DDEs).
These are like ODEs, but with time delays, e.g., y′(t) = ky(t− t0), rather than
y′(t) = ky(t). They arise because biological processes like transcription and
translation, are not instantaneous. First, we discussed how our model will ac-
count for decrease in concentration due to dilution (from cellular growth), and
degredation of the gene products. Next, we derived two ODEs from chemical
reaction networks, of (1) the repressor binding to allolactose, and (2) the repres-
sor binding to the operator region. We derived a formula for [O]/Otot = 1

1+K2[R]
,

the proportion of free operator sites, showing that it cannnot be absolutely
zero. We covered the Delay differential equation models of gene regulation”
slides, pp. 1–9.

Suggested reading : Robeva/Hodge (2013), Chapter 2: Bistability in Lactose
Operon of Escherichia coli: A Comparison of Differential Equation and Boolean
Network Models, by R. Robeva and N. Yildirim. Sections 2.1–2.3, pp. 37–46.

• WEEK 4: 9/9–9/13.

– Mon. September 9: We finished modeling the lac operon dynamics using
mass-action kinetics, and got a Hill-like equation for the proportion of free op-
erator sites, in terms of the concentration [A] of the inducer, allolactose. Next,
we saw how to model time-delays in a basic exponential growth model. Finally,
we saw the 3-variable delay differential equation (DDE) model of the operon,
by Yildirim and Mackey. The variables are M (mRNA), B (β-galactosidase),
and A (allolactose). There is one parameter (constant), which is L (lactose).
We derived the differential equation for each of these.

The first step with such a model is to find the fixed points, though these had
to have been done numerically. For a middle range of lactose, there are three
fixed points, which is what one would expect for bistability. For lower or higher
ranges of lactose, there is only one fixed point. This is nicely illustrated on a
1-parameter bifurication diagram of A∗ vs. L, as well as the simulated time
series for M(t), A(t), and B(t). We covered the Delay differential equation
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models of gene regulation” slides, pp. 9–18.

Suggested reading : Robeva/Hodge (2013), Chapter 2: Bistability in Lactose
Operon of Escherichia coli: A Comparison of Differential Equation and Boolean
Network Models, by R. Robeva and N. Yildirim. Section 2.4, pp. 47–57.

– Wed. September 11: We introduced a 5-variable DDE model of the lac
operon. This one uses M , B, and A as before, but also L (lactose) and P (lac
permease). There is one parameter, Le (extracellular lactose). The long-term
results with the fixed points and bistability are analogous. We also briefly
saw a few other DDE models of operons, such as the tryptophan (trp), tryp-
tophanse (tna), and arabinose (ara). The authors of these papers come from
math, physics, and engineering.

Next, we introduced the idea of a Boolean model, with a “toy model” of the
lac operon, with three nodes and two parameters. The functions are updated
synchronously to yield a dynamical system map f : Fn

2 → Fn
2 , and the state

space is a graph with vertex set Fn
2 and 2n directed edges, each of the form

(x, f(x)). We covered the Delay differential equation models of gene regula-
tion” slides, pp. 19–29, and Basics of Boolean modeling, pp. 1–6.

Suggested reading : Robeva/Hodge (2013), Chapter 1: Mechanisms of Gene
Regulation: Boolean Network Models of the Lactose Operon in Escherichia
coli. Section 1.3.1–1.3.3, pp. 6–15.

– Fri. September 13: We showed how to generated the state space of our toy
Boolean model with Cyclone. By making the parameters constants, there were
5 variables, and the state space has four attractors, which are all fixed points
that we expected biologically. Next, we proposed a more refined model with
five variables, but it had a flaw because there were two fixed points that di
not make biological sense. We also showed to to use Bool Net in R to find
the attractors and plot the state space space. We covered the slides, Basics of
Boolean modeling, pp. 6–16.

Suggested reading : Robeva/Hodge (2013), Chapter 1: Mechanisms of Gene
Regulation: Boolean Network Models of the Lactose Operon in Escherichia
coli, by R. Robeva. Sections 1.3.4–1.3.7, pp. 16–25.

• WEEK 5: 9/16–9/20.

– Mon. September 16: First, we went over a list of published Boolean net-
works, including operons in E. coli, and in other model organisms, such as the
fruit fly, Arabidopsis thaliana (plant), yeast, C elegans (worm). There was
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even an example from ecology. We mentioned a few example of well-modeled
biological processes, such as genetic switches, cell cycles, and cell differentia-
tion.

Next, we browsed the website of the Gene Interaction Network simulation
(GINsim) software, which has been around since around 2005–06. This sim-
ulates logical models, a larger class of discrete models that includes Boolean
networks. GINsim is freely available and can be run on Windows, Mac, or
Linux. Models are stored in .zginml files, and the website has a repository of
over 65 published models, with links to the corresponding papers. We browsed
a few of things such as the lysis-lysogeny switch in the phage lambda virus
(Thieffry/Thomas, 1995, w/ 339 citations), the Th-cell differentiation network
(Mendoza, 2006, w/ 235 citations), a Boolean model of geroconversion (Ver-
lingue et al., 2016), and the p53-Mdm2 network for DNA repair (Abou-Jaoudé
et al., 2009, w/ 130 citations). It was striking at how different these papers
were stylistically, which should be expected because they were written by re-
searchers in different fields.

We also discussed how there are a number of frameworks for stochastic Boolean
models. One example are probabilistic Boolean networks, or PBNs (Dougherty
/ Shmulevich, 2010), that put a probability distribution on the update func-
tions. In another, Stochastic Discrete Dynamical Systems, or SDDSs (Murru-
garra / Aguilar, 2018), there are activiation and inhibition probability parame-
ters. The Markovian Boolean Stochastic Simulator (MaBoSS) software package
simulates a continuous-time Markov chain on a Boolean network (Stoll et al.,
2012). Using Google, we stumbled upon stochastic Boolean networks SBNs
(Liang / Han, 2012). We covered the slides, Basics of Boolean modeling, pp.
16–17.

Suggested reading : Browse the GINsim website at http://ginsim.org/, es-
pecially the model repository.

– Wed. September 18: We began with a 9-variable Boolean model of the lac
operon that had two parameters: Le for extracellular lactose and Ge for extra-
cellular glucose. The fixed points are the solutions of the system fx1 = x1, fx9 =
x9}. We saw how to solve this with the computational algebra software
Macaulay2: compute a Gröbner basis of the ideal I = (fx1 + x1, . . . , fx9 + x9).
For all 4 Boolean parameter vectors (Ge, Le), there was one fixed point that
was exactly what shoudl be expected biologically. We covered the slides Fixed
points of Boolean models, pp. 1–14.

Suggested reading : Robeva/Hodge (2013), Chapter 1: Mechanisms of Gene
Regulation: Boolean Network Models of the Lactose Operon in Escherichia
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coli, by R. Robeva. Sections 1.4–1.6, pp. 25–34.

– Fri. September 20: We gave a brief overview of what Gröbner bases can do,
without actually defining them. For our purposes, we can think of them as a
“nonlinear version” of Gaussian elimination, in that they can be used to re-
duce a system of nonlinear polynomials, into a much simpler “upper triangular
form.” We saw how to compute a Gröbner basis in Macaulay2, and use it to
solve such a nonlinear system of equations.

Next, we saw a published model of the lac operon that has 10 variables and 3
parameters, and exhibits bistability because there are two fixed points under
medium levels of lactose. This model incorporates medium levels by adding
additional Boolean variables, and we discussed other approaches to this, like
using ternary variables, or multivariate logic. We used Macaulay2 to compute
the fixed points of this model, which make sense biologically. We covered the
slides Fixed points of Boolean models, pp. 12–14, and Advanced features of
Boolean models, pp. 1–7.

Suggested reading : B. Sturmfels. What is. . . a Gröbner basis?” Notices Amer.
Math. Soc. 52(10):1199:–1200, 2005. https://math.berkeley.edu/~bernd/

what-is.pdf, and the Introduction (pp. 1–3) to the preprint: J.G. Galofre,
M. Pérez-Millán, A.G. Rial, R. Laubenbacher, A. Dickenstein. Beyond Boolean
networks. 2024. https://arxiv.org/pdf/2404.16760

• WEEK 6: 9/23–9/27.

– Mon. September 23: We saw how time delays can be incorporated into
Boolean models, both for activators and repressors. There are several ways to
do this, depending on whether the time-delay of activation (resp., repression)
is the same as of un-activation (resp., un-repression). Then, we saw how to
incorporate diluation and degregation into Boolean models. Next, we revisited
the 3-variable ODE models of the lac operon, and computed the half-lives of
the variable (concentrations) using a basic ODE, in preparation for building a
Boolean models using the variables (M , B and A), the incorporate time delays
and dilution/degregation. We covered the slides Advanced features of Boolean
models, pp. 7–14.

Suggested reading : Robeva/Hodge (2013), Chapter 2: Bistability in Lactose
Operon of Escherichia coli: A Comparison of Differential Equation and Boolean
Network Models, by R. Robeva and N. Yildirim. Section 2.5, pp. 57–60.

– Wed. September 25: We proposed several Boolean models of the lac operon,
based off of the 3- and 5-variable ODE models. These incorporated time delays
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for activation and dilution/degregation. They also exhibited bistability. We
covered the slides Advanced features of Boolean models, pp. 15–26.

Suggested reading : Robeva/Hodge (2013), Chapter 2: Bistability in Lactose
Operon of Escherichia coli: A Comparison of Differential Equation and Boolean
Network Models, by R. Robeva and N. Yildirim. Sections 2.6–2.7, pp. 60–73.

– Fri. September 27: Class canceled (Hurricane Helene).

• WEEK 7: 9/30–10/4.

– Mon. September 30: Class canceled (Hurricane Helene).

– Wed. October 2: Many Boolean models are prohibitively large to effictively
analyize. We saw how models can be reduced while preserving key features of
their dynamics. Our focus was on a method that preserves the number of fixed
points, which can then be recovered by back-substituting. We saw how to use
Macaulay2 to do this efficiently. We covered the slides Reduction of Boolean
models, pp. 1–16.

Suggested reading : Robeva (2015), Chapter 6: Steady State Analysis of Boolean
Models: A Dimension Reduction Approach, by A. Veliz-Cuba and D. Murru-
garra. pp. 121–38.

– Fri. October 4: We reduced a 26-node Boolean model of the T-helper cell
differentiation network to a 2-node network that had 3 fixed points, which
made sense biologically.

We began the section where we will be formalizing algebraic models and fi-
nite dynamical systems, and we started with seeing the (state) state space
and asynchronous automaton of several examples. The fixed points are always
independent of update order. However, sometimes larger limit cycles in the
synchronous state space can disappear in the asynchronous state space. Con-
versely, we saw an example of a published model (Faure et al, 2006) that had
1 fixed point and a 7-cycle in the synchronous state space, but a 112-node
complex attractor in the asynchronous automaton.

We introduced the concept of a field, which is a set in which we can add, sub-
tract, multiply, and divide (but not by zero), and the distributive law holds.
More gerally, a ring is such a set, but without the ability to divide (i.e., there
need not be multiplicative inverses), and multiplication need not commute.
We covered the slides Reduction of Boolean models, pp. 17–21, and Algebraic
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models and finite dynamics systems, pp. 1-13.

Suggested reading : Faure, A., Naldi, A., Chaouiya, C. and Thieffry, D. (2006)
Dynamical analysis of a generic Boolean model for the control of the mam-
malian cell cycle. Bioinformatics, 22, e124-e131.

• WEEK 8: 10/7–10/11.

– Mon. October 7: We spent the day talking about finite fields. Specifically,
every the characteristic of finite field is the smallest n · 1 = 1 + · · · + 1 = 0,
and this must be prime. We stated, without proof, that there is a unique finite
field of order q = pn for each prime p and positive integer n. We showed
how to construct this finite field as a quotient a polynomial ring, namely
Fq
∼= Zp[x]/〈f(x)〉, where f(x) is any irreducible polynomial of degree n. We

did some examples to see what this really means, both by hand, and using
the Macaulay2 software package. We covered the slides Algebraic models and
finite dynamics systems, pp. 14-17 (mostly board work).

– Wed. October 9: Fields like Q and R are totally ordered, whereas C is not.
Though we often consider 0 < 1 < 2 < · · · < p−1 in Fp, this is not an “actual”
total order.

We spent most of the class understanding the difference between the infinite
ring of polynomials F[x] vs. the finite set of functions Fq → Fq. We saw how to
represent every such function with a truth table, and a basic counting argument
shows that there are qq such truth tables.

Over the field Fq, we always have xq = x, and so any two polynomials that
different by replacing xq with x will define the same function. This means that
every function Fq → Fq can be represented by a polynomial in the quotient
ring F[x]/〈xq − x〉. Note that both of these sets have size qq. We covered the
slides Algebraic models and finite dynamics systems, pp. 18-20 (mostly board
work).

Suggested reading : Robeva/Macauley (2018), Chapter 4: The Regulation of
Gene Expression by Operons and the Local Modeling Framework. Sections
4.3.1.–4.3.2, pp. 106–112.

– Fri. October 11: The representation between Boolean (or ternary, etc.)
functions and elements in a quotient ring extends naturally to multivariate
polynomials. Every n-variable polynomial Fq[x1, . . . , xn] defines a function
Fn
q → Fq, and by counting truth tables, we see that there are q(q

n) of these.
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Similarly, by counting monomials of degree less than q, there are q(q
n) elements

in Fq[x1, . . . , xn]/〈xq1 − x1, . . . , xqn − xn〉.

We defined a Boolean model as an n-tuple (f1, . . . , fn) of Boolean functions,
where fj : Fn

2 → Fn, and there are (22n)n = 2n2n of these. Analogously,
an algebraic model (or “local model”) is an n-tuple (f1, . . . , fn) of functions
Fn
q → Fq, and there are (qq

n
)n = qnq

n
. It is straightforward to see that there

are (qn)q
n

= qnq
n

state space graphs, which means that every map Fn
q → Fn

q is
the FDS map of an algebraic model. We covered the slides Algebraic models
and finite dynamics systems, pp. 21-32 (mostly board work).

Suggested reading : Robeva/Macauley (2018), Chapter 4: The Regulation of
Gene Expression by Operons and the Local Modeling Framework, Section 4.3.4,
pp. 112–115.

• WEEK 9: 10/14–10/18.

– Mon. October 14: Fall Break (no class)

– Wed. October 16: We formalized the asynchronous automaton of an alge-
braic model (f1, . . . , fn), and showed that there are qnq

n
of them, which means

that not only does every algebraic model define an asynchronous automaton,
but each possible automaton arises from such a model. We formalized the no-
tion of transient and periodic points for the synchronous state space. This is a
little more complicated in the asynchronous case because of the possibility of
complex attractors. In general, an attractor is a strongly connected component
that has no outgoing edges from it. We covered the slides Algebraic models
and finite dynamics systems, pp. 33-38.

Suggested reading : Robeva/Macauley (2018), Chapter 4: The Regulation of
Gene Expression by Operons and the Local Modeling Framework, Sections
4.3.5–4.3.6, pp. 115–118.

– Fri. October 18: We formalized the notion of the wiring diagram of an
algebraic model. Going forward, we will be particularly interested in unate
functions, which are those whoe wiring diagrams have only positive or nega-
tive edges. We finished this set of slides by counting algebraic models and BNs
with certain properties—this number grows fast !

We discussed the well-known network inference problems in systems biology,
and several general approaches, such as correlation networks, regression-based
methods, information theoretical scores, Bayesian networks, ODE methods,
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and algebraic methods, which we will be focusing on. We covered the slides
Algebraic models and finite dynamics systems, pp. 39–45 and The network
inference problem, pp. 1–3.

Suggested reading : One of the survey papers in the networkr inference problem,
such as:
∗ M.M. Saint-Antoine & A. Singh (2020). Network inference in systems

biology: recent developments, challenges, and applications. Curr Opin
Biotechnol. 63, 89–98.
∗ V.A. Huynh-Thu & G. Sanguinetti (2019). Gene regulatory network in-

ference: an introductory survey. Gene regulatory networks: Methods and
protocols, 1–23.

• WEEK 10: 10/21–10/25.

– Mon. October 21: We began with an example of the state space of a Boolean
model (f1, f2, f3), with several edges missing, and asked “which variables can
depend on which variables”? This is an inherently algebaric question. We
argued why we can consider the coordinate functions individually, which us to
posing this question for a function f : Fn

2 → F2, given partial information. We
considered a particular example, of a truth table that had 5 (of 8) missing val-
ues, and so 256 models that fit this data. Of them, only 4 are unate, which are
the most “biologically meaningful.” For each, we wrote the (signed) support,
and illustrated which ones were minimal sets, called min-sets. Next, we out-
lined the broad goals of this section: (1) encode partial data algebraically with
an ideal, (2) take its primary decomposition [analogue of factoring a number
into prime powers], and (3) translate the primary components into minimal
wiring diagrams.

We finished with a brief discussion of monomial ideals, which are those gen-
erated by monomials. These algebraic objects have a strong combinatorial
components, and we saw an example of this by drawing how a a monomial
ideal is encoded by a staircase diagram. We covered the slides The network
inference problem, pp. 4–11.

Suggested reading : Robeva/Macauley (2018), Chapter 6: Inferring Interac-
tions in Molecular Networks via Primary Decompositions of Monomial Ideals,
Sections 6.1–6.2.1, pp. 175–182.

– Wed. October 23: We explored the bijection between squarefree monomial
ideals and simplicial complexes, which is Alexander duality. Specifically, if we
associate (monic) squarefree monomials with subsets of X = {x1, . . . , xn}, then
monomials in I are closed under unions, and monomials not in I are closed
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under intersections.

The primary decomposition of an ideal is a way to write I = P1∩· · ·∩Pk, where
the Pi’s is a primary ideal, called primary components. Loosely speaking, is
the the “ideal analogue” of factoring an integer into prime powers: 200 = 23 ·52

in terms of ideals is 200Z = 8Z ∩ 25Z. For squarefree monomial ideals, also
called Stanley-Reisner ideals, the generators of the primary components of I
are the complements of the maximal faces. We covered the slides The network
inference problem, pp. 12–20.

Suggested reading : Robeva/Macauley (2018), Chapter 6: Inferring Interac-
tions in Molecular Networks via Primary Decompositions of Monomial Ideals,
Sections 6.2.2–6.2.3, pp. 182–191.

– Fri. October 25: We defined prime and primary ideals, and mentioned the
Lasker-Noether theorem, which says that every ideal of a polynomial ring
F[x1, . . . , xn] (more generally, a Noetherina ring) has a primary decomposi-
tion. Though this need not be unique or easy to compute, square-free mono-
mial ideals have a simple combinatorial description. After several examples,
we applied the Stanley-Reisner theory (i.e., the theory of square-free monomial
ideals) that we have built up to reconstructing algebraic models.

Given a set D = {(s1, t1), . . . (sm, tm)} of “data” we say that a function f fits
the data if f(si) = ti for each i. The model space is the set of functions that
fit the data. Given a set of data, we defined what it means for a set α ⊆ [n]
to be disposable vs. non-disposable, and feasible vs. infeasible, with respect
to a set of data. The non-disposable sets generated an ideal, and its primary
components are the min-sets. We covered the slides The network inference
problem, pp. 21–37.

Suggested reading : Robeva/Macauley (2018), Chapter 6: Inferring Interac-
tions in Molecular Networks via Primary Decompositions of Monomial Ideals,
Sections 6.3, pp. 191–199.

• WEEK 11: 10/28–11/1.

– Mon. October 28: We saw how to modify the previous construction of the
ideals of non-disposable sets to the ideal of signed non-disposable sets. Specifi-
cally, instead of encoding the coordinates in which si and s′i differ with a mono-
mial m(si, sj), we use a pseudomonomial p(si, sj), and use xi if the interaction
is negative. As before, the primary components give the signed min-sets, but
only for functions that are unate. We saw an a published example, involving
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the gene network for mesodermal tissue development in the model organism
(worm) C. elegans.
Finally, we saw how recent published work (Harrington et al.) has extended
these ideas to continuous-space dynamical systems f : [0, 1]n → [0, 1]n. Several
examples included difference equation models of flour beetles and fish. We
covered the slides The network inference problem, pp. 38–48.

Suggested reading :
∗ Robeva/Macauley (2018), Chapter 6: Inferring Interactions in Molecular

Networks via Primary Decompositions of Monomial Ideals, Sections 6.4–
6.6, pp. 199–210.
∗ Harrington, H. A., Stillman, M., & Veliz-Cuba, A. (2024). Algebraic net-

work reconstruction of discrete dynamical systems. Adv. Appl. Math.,
161, 102760.
∗ Veliz-Cuba, A., Newsome-Slade, V., & Dimitrova, E. S. (2024). A unified

approach to reverse engineering and data selection for unique network
identification. SIAM J. Appl. Dyn. Syst. 23(1), 592-615.

– Wed. October 30: We begin with the same “partial state space” of a 3-node
Boolean model as in the last section, but this time asked: “what can we say
about the set of all functions that fits this data.” A simple answer is simply
just all ways to fill out the truth table, but that doesn’t elucidate the algebraic
structure. As before, we can consider each function fj : Fn

2 → F2 separately.

Using the same example as the one from last week (which had min-sets {x1, x3}
and {x1, x2}), we first attempted to construct a single funtion. This was done
by polynomial interpolation, in a similar manner to how this is taught with
Chebyshev polynomail interpolation in our numerical analysis (Math 8600),
dual bases of a vector space of polynomials in linear algebra (Math 8530), and
the proof of the Chinese remainder theorem in abstract algebra (Math 8510).
The general idea is to construct a polynomial ri(x) such that ri(si) = 1 and
ri(sj) = 0 for i 6= j, and then to use f(x) = t1r1(x) + · · ·+ tkrk(x). We covered
the slides The model space, pp. 1–8.

Suggested reading : Robeva/Hodge (2013), Chapter 3: Inferring the Topology
of Gene Regulatory Networks: An Algebraic Approach to Reverse Engineering,
by E. Dimitrova and B. Stigler. Sections 3.1–3.3, pp. 75–85.

– Fri. November 1: Given a set D =
{

(s1, t1), . . . , (sk, tk)
}

of data, the van-
ishing ideal is the set I(D) of (polynomial) functions f for which f(si) = 0
for all i. The model space of D is the set of functions which fit the data, i.e.,
f(si) = ti. This is a coset of the vanishing ideal, i.e., Mod(D) = f + I(D).
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We have seen this structure elsewhere, as the equation of a line or plane not
through the origin, or the solution set to Ax = b, or to an inhomogeneous
linear ODE. We covered the slides The model space, pp. 8–13.

Suggested reading : Robeva/Hodge (2013), Chapter 3: Inferring the Topology
of Gene Regulatory Networks: An Algebraic Approach to Reverse Engineering,
by E. Dimitrova and B. Stigler. Section 3.4, pp. 85–88.

• WEEK 12: 11/4–11/8.

– Mon.–Wed November 4–6: We saw how to compute the vainishing ideal
I(D) of a set D =

{
(s1, t1), . . . , (sk, tk)

}
of data, as the intersection of the

ideals that vanish on the individual input vectors. Though it is not easy to
find a basis of such an intersection by hand, Macaulay2 can do it right away.
Next, we saw how to find the model space of a set D =

{
(s1, t1), . . . , (sk, tk)

}
of data of input vector and output vectors. This is done by applying the
previous method to the individual coordinates. We did this with an example
of a 3-node Boolean model, where 3 of the 8 edges are unknown. The resulting
model space has 83 = 512 functions, and is

Mod(D) =
[
f1 + I(D)

]
×
[
f2 + I(D)

]
×
[
f3 + I(D)

]
,

where the vanishing ideal I(D) has size 8. We covered the slides The model
space, pp. 14–23.

Suggested reading : Robeva/Hodge (2013), Chapter 3: Inferring the Topology
of Gene Regulatory Networks: An Algebraic Approach to Reverse Engineering,
by E. Dimitrova and B. Stigler. Sections 3.5–3.6, pp. 89–100.

– Fri. November 8: We finished Part III with how to reverse-engineer the
models space of a (non-Boolean) algebraic network, using an example of a 3-
node model over F5. Then, we discussed 1D dynamical system maps, and the
logistic map xn+1 = rxn(1− xn). Of particular importance was to see how the
dynamics changes as a function of the parameter r. This system has a stable
(overdamped) fixed point for 0 ≤ r ≤ 2, a stable (underdamped) fixed point for
2 ≤ r ≤ 3. For 3 < r < 3.45, the is a size-2 stable attractor, followed by a size-
4, then size-8 attractor, and so on, until the onset of chaos, at r ≈ 3.56995.
Even for some larger values, there are islands of stability, like a 3-cycle for
r ≈ 3.83. Though these can be studied analytically, we mostly used Matlab to
illustrate the main ideas, especially using cobwebbing diagrams. We covered
the slides The model space, pp. 24-28, and Random Boolean networks, pp. 1–6.
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Suggested reading : R.M. May, (1976). Simple mathematical models with very
complicated dynamics. Nature 261(5560), 459–467.

• WEEK 13: 11/11–11/15.

– Mon. November 11: We started the day with a quick video and animation
to see how the Mandlebrot set appears in the bifurication diagram of the lo-
gistic map. Then, we gave a brief summary of what statistical mecanics is:
the study of large assemblies of microscope entities using the tools of prob-
ability and statistics. In 1969, Stuart Kauffman introduced random Boolean
networks (RBNs) as models of gene regulatory networks. In his model, there
are N nodes, each having K randomly chosen inputs. In other words, the net-
work topology is construct first. Next, the functions fi : FK

2 → F2 are assigned,
via some distribution. These RBNs are called NK-networks. Kauffman no-
ticed that for K = 1, the RBNs had small attractors and lots of fixed points,
and perturbations tended to die out. These networks are stable. For large K,
the RBNs had lots of large attractors, and perturbations tended to propogate.
These networks are called chaotic. Networks for K = 2 are on the boundary of
these phases, and are called critical. Early evidence seemed to suggest that bi-
ological networks shared a number of properties (e.g., scaling laws) with these
random critical networks.

In 1942, geneticist C.H. Waddington developed the concept of an epigenetic
landscape, and canalization, a measure of evolution robustness that quan-
tifies how a population can produced the same phenotype despite changes
to its environment or genotype. This was quantified in Boolean functions
by Stuart Kauffman in 1993. A Boolean function f : Fn

2 → F2 is canaliz-
ing if for some variable i, taking an input value xi = a completely deter-
mines the output. These are precisely functions of the form f(x1, . . . , xn) =
yi♦g(x1, . . . , xi−1, xi+1, . . . , xn), where yi ∈ {xi, xi} and ♦ ∈ {∧,∨}. Most
functions in Boolean models are canalizing, and it’s been shown the RBNs
built with them are more stable.

One way to assigned the functions in a RBN is to pick Boolean functions with
bias p, which measn that the truth table is a length-2K vector of iid Bernoulli
random variables. A uniform distribution is the special case of p = 1/2. Other
distributions include weighted classes, only picking canalizing functions, or
picking all of the same function (e.g., only “AND functions”). We covered the
slides Random Boolean networks, pp. 7–14.

Suggested reading : B. Drossel, (2008). Random Boolean networks. Reviews
of nonlinear dynamics and complexity, Sections 1 & 2, (pp. 1–5 of https:
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//arxiv.org/pdf/0706.3351).

– Wed. November 13: We started by talking about percolation theory, and
compared square lattices where each edge exists with probability p. If p = 1/4,
then this picture looks like “islands.” If p = 3/4, then it looks like “holes,”
and if p = 1/2, then it’s somewhere between these two phases. This “phase
transition” is an important topic in statistical mechanics, and we’ll see some-
thing similar with RBNs.

In the context of random Boolean networks, we defined what it meant for
a probability distribution on functions to be permutation-invariant (e.g., bi-
ased functions), and inversion-invariant (e.g., weighted classes). A straightfor-
ward probabilistic argumente shows that if an inversion-invariant distribution
is used, then the expected number of fixed points will be 1. A little longer
argument established the same result for biased functions. Finally, we sum-
marized an argument that gave the expected number of length-L cycles in a
RBN with K = 2, which was used to show that the number of attractors in
a K = 2 network grows faster than any power law. We covered the slides
Random Boolean networks, pp. 14–19.

Suggested reading : B. Drossel, (2008). Random Boolean networks. Reviews of
nonlinear dynamics and complexity, Section 3, (pp. 5–9 of https://arxiv.
org/pdf/0706.3351).

– Fri. November 15: We discussed how to measure the growth of a small per-
turbation near a steady-state P ∗ in a difference equation: plug in Pt = P ∗+ pt
and Pt+1 = P ∗ + pt+1, disregard non-linear terms, and solve for |pt+1/pt|. If
this is less than 1, then P ∗ is stable; otherwise it is unstable. Alternatively,
if Pt+1 = F (Pt), then the dynamics are stable if |F ′(x)| < 1 and chaotic if
|F ′(x)| > 1.

We discussed the Derrida and Pomeau’s annealed approximation of random
Boolean networks. The network is assumed to be infinitely large, so flucations
of global quantities are negligible, and the inputs of each node are reset at each
time-step. In many case, the time-evolution of weight (i.e., the proportion of
1s) can be derived as a 1D dynamical system, bt+1 = F (bt), and we saw this us-
ing biased, threshold, and canalizing functions. We saw examples of where this
statistic is both ordered and chaotic. We covered the slides Random Boolean
networks, pp. 19–25.

Suggested reading : B. Drossel, (2008). Random Boolean networks. Reviews
of nonlinear dynamics and complexity, Sections 4–7, (pp. 9–19 of https:
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//arxiv.org/pdf/0706.3351).

• WEEK 14: 11/18–11/22.

– Mon. November 18: We defined the Boolean jth partial derivative, which is
1 if toggling the jth bit flips the output, and 0 otherwise. The expected value
of this across all 2K inputs is the activity of xj in f , denoted αf

j . This is simply

the probability that toggling the jth bit flips the output. The sensitivity sf (x)
of f at x is the number of Hamming neighbors on which f is different. The
average sensitivity is just the sum of the activities: sf = αf

1 + · · ·+ αf
K .

In a general dynamical system, the Lyapunov exponent measures the diver-
gence rate of infinitesimally close trajectories. Small perturbations grow if
λ > 0 and they shrink of λ < 0. The Boolean network analogue of this is the
logarithm of the average sensitivity. For a random Boolean function f with
bias p, the average sensitivity is 2Kp(1− p). This defines the critical threshold
between stable networks and chaotic networks, for p = 1/2. We covered the
slides Random Boolean networks, pp. 26–33.

Suggested reading : Shmulevich, Ilya, and Stuart A. Kauffman. Activities and
sensitivities in Boolean network models. Phys. Rev. Lett. 93.4 (2004): 048701.

– Wed. November 20: We said a few works about the concept of entropy
from information theory, and watched a few minutes of 3blue1brown’s won-
derful video on Wordle and information theory. The concept of basin entropy
of Boolean networks has been studied, and was shown to be maximized for
critical networks.

We moved onto a different topic: biological feedback. In 1981, René Thomas
observed that positive feedback loops (in the wiring diagram) seemed to be
necessary for multistationarity, and negative feedback seemed to be necessary
for sustained oscillations. This has since been explored and (mostly) proven in
a variety of frameworks, including differential equations to Boolean and logical
models. We stated two versions of Rule 1 in an ODE framework, from 2002
and 2003, respectively. We stated two partial results for Rule 2, from 1998.

Moving onto the Boolean model framework, we defined the discrete jth partial
derivative at x ∈ Fn

2 , denoted fij(x) = ∂fi(x)/∂xj ∈ {−1, 0, 1}, which tells us
whether increasing the jth bit 0→ 1 increases, decreases, or preserves the out-
put. The local wiring diagram Gf(x) is the graph on {1, . . . , n} with a signed
edge from j to i for each nonzero fij(x). The (global) wiring diagram is simply
the union of these local wiring digrams. We did this for an example Boolean
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model, and saw how this resolves the ambiguity of the signs of interactions
when a varable xi and its negation xi both appear in the logical expression.
We covered the slides Biological feedback, pp. 1–6.

Suggested reading : Read the section References to more recent work in the
Preface (pages 7–13) of the 2006 update to the book: Thomas, R. and D’Ari,
T. Biological Feedback. CRC Press, 1990. This can be found online. Also,
watch the entire 3blue1brown video on Wordle and information theory.

– Fri. November 22: After taking HW questions, we reviewed the concept of
a local wiring diagram, constructed from discrete partial derivatives. Contra-
positives of Thomas’ rules say that if the wiring digram has no positive (reps.,
negative) cycle, then f has at most (resp., at least) one fixed point. As a
corollary, if the wiring diagram is acyclic, then it has a unique fixed point. In
fact, we can say more (Robert, 1980): fn is constant, and the asynchronous
automaton A(f) is acyclic and has a geodesic path from every state to the
unique fixed point. A Boolean model for which fk is contstant for some k
is said to be nilpotent. In 2019, A. Richard studied nilpotent dynamics, and
proved some partial converses to Thomas’ rules.

The Jacobian conjecture in algebraic geometry is a famous open problem from
1939. It says that (assuming charF = 0) if f : Fn → Fn is a polynomial map
f : x 7→ (f1(x), . . . , fn(x)), then the det J is a non-zero constant function iff f
is invertible (the “⇐” direction is trivial). In 1999, an equivalent statement
was proven, saying that if every eigenvalue of the Jacobian lies withing the unit
circle, for all x ∈ Fn, then f has a unique fixed point. The “Boolean analogue”
of this was proven by Shih & Dong in 2005: if every eigenvalue of a Boolean
network is zero, then f has a unique fixed point, which is a stronger version of
Robert’s theorem. We covered the slides Biological feedback, pp. 6–11.

Suggested reading : Richard, A. (2019). Positive and negative cycles in Boolean
networks. J. Theor. Biol., 463, 67-76.

• WEEK 15: 11/25–11/29.

– Mon. November 25: We summarized the main results from the last 25 years
in the literature about Thomas’ rules on biological feedback. We also saw two
explicit examples: Boolean models when the wiring diagram is a simple chord-
less positive cycle, and a simple chordless negative cycle. The first example
has two fixed points, and the second example has a length-2n cycle. We will
finish the class next week by proving the Boolean model version of Thomas’
second rule, and we ended this class with some definitions, and an outline of
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how the proof will go. We covered the slides Biological feedback, pp. 11–21.

Suggested reading : Richard, A. (2010). Negative circuits and sustained oscilla-
tions in asynchronous automata networks. Adv. Appl. Math. 44(4), 378-392.

– Wed.–Fri. November 27–29: Thanksgiving Break (no class)

• WEEK 16: 12/2–12/6.

– Mon. December 2: We finished the proof of Robert’s second rule, by A Richard
(2010). One key idea is the strong local wiring diagram G′f(x), which is a sub-
graph of the ordinary local wiring diadgram Gf(x) (Lemma 1). Next, Lemma
2 describes a condition of when the local wiring diagram will have a path from
j to i: if the path starts with “edge j”, and ends with the first time that “edge
i flips.” Lemma 3 says that if the asynchronous automaton has cyclic attractor
A and at least one node has out-degree 1, then the strong wiring diagram has
a negative cycle. This is done by applying Lemma 2 in the special case of
i = j, because in every negative cycle, there is path starting and ending with
an “edge i,” of opposite signs.

In Lemma 4, this is proven without the “out-degree 1” condition, by show-
ing that for some i, replacing fi(x) with the identity function results in a
strictly smaller attractor A′ ( A. This puts a partial order on the pair (f, A)
of Boolean models with attractors. Induction over this poset shows that the
strong wiring diagram has a negative cycle, which means that the wiring dia-
gram must as well. We covered the slides Biological feedback, pp. 21–38.

Suggested reading : Feliu, E., & Wiuf, C. (2015). Finding the positive feedback
loops underlying multi-stationarity. BMC Syst. Biol. 9, 1-12.

– Wed. December 4: In-class exam.

– Fri. December 6: Class presentations (to be continued during final’s week).


