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Differential equations models of the lac operon

We will derive two ODE models of the lac operon: one with 3 variables, and another with 5
variables.

These models use Michaelis–Menten equations from mass-action kinetics.

Due to the time of transcription and translation, they will be delay differential equations.

They will also incorporate features of the operon such as:

bistability

dilution of protein concentration due to bacterial growth

degredation (decay) of protein concentration

time delays

In general, bistable systems tend to have positive feedback loops in their “wiring diagrams”
(variable dependancies).

A feedback loop with two negative interactions is considered positive.
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Bistability

A system is bistable if it has two stable steady-states.

Often, these are separated by an unstable steady-state.

From Wikipedia.
The threshold ODE: y 1 “ ´ry

`

1´ y
M

˘`

1´ y
T

˘

.

In the threshold model for population growth, there are three steady-states, 0 ă T ă M:

M “ carrying capacity (stable),

T “ extinction threshold (unstable),

0 “ extinct (stable).
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Types of bistability

The lac operon has been observed to exhibit bistability.

The expression level of the lac operon genes are either almost zero (“basal levels”), or very
high (thousands of times higher). There’s no “inbetween” state.

The exact level depends on the concentration of intracellular lactose. Let’s denote this
parameter by p.

Now, let’s “tune” this parameter. The result might look like the graph on the left.

This is reversible bistability. In other situations, it may be irreversible (at right).
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Hysteresis

For reversible bistability, the up-threshold L2 of p is higher than the down-threshold L1 of p.

This is hysteresis: a dependence of a state on its current state and past state.

Weather example

Can we deduce what season it is just by the outdoor temperature at noon?

If the outdoor temperature is T ă 40, we know it’s winter.

If the outdoor temperature is T ą 90, we know it’s summer.

But if the outdoor temperature is T “ 65, we don’t know whether it’s spring or fall.
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Hysteresis and the lac operon
If lactose levels are medium, then the state of the operon depends on whether or not a cell
was grown in a lactose-rich environment.

Lac operon example

Let rLs “ concentration of intracellular lactose.

If rLs ă L1, the operon is OFF.

If rLs ą L2, the operon is ON.

If L1 ă rLs ă L2, the operon might be ON or OFF.

In the region of bistability pL1, L2q, one can find both induced and un-induced cells.
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Modeling dilution in protein concentration due to bacterial growth

E. coli grows fast! It can double in 20 minutes. Thus, ODE models involving concentration
can’t assume volume is constant.

Let’s define:

V “ average volume of an E. coli cell.

x “ number of molecules of protein X in that cell.

Assumptions:

cell volume increases exponentially in time: dV
dt
“ µV .

degradation of X is exponential: dx
dt
“ ´βx .

The concentration of x is rxs “ x
V

. The derivative of this is (by the quotient rule):

drxs

dt
“

`

x 1V ´ V 1x
˘ 1

V 2
“

`

´ βxV ´ µVx
˘ 1

V 2
“ ´

`

β ` µ
˘ x

V
“ ´pβ ` µqrxs.
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Modeling of lactose repressor dynamics

Assumptions

Lac repressor protein is produced at a constant rate.

Laws of mass-action kinetics.

Repressor protein binds to allolactose:

R ` nA
K1
ÝÝáâÝÝ

1
RAn

drRAns

dt
“ K1rRsrAs

n ´ rRAns

Assume the reaction is at equilibrium: drRAns

dt
“ 0, and so K1 “

rRAns

rRsrAsn
.

The repressor protein binds to the operator region if there is no allolactose:

O ` R
K2
ÝÝáâÝÝ

1
OR

drORs

dt
“ K2rOsrRs ´ rORs.

Assume the reaction is at equilibrium: drORs
dt

“ 0, and so K2 “
rORs
rOsrRs

.
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Modeling of lactose repressor dynamics

Let Otot “ total operator concentration (a constant). Then, using K2 “
rORs
rOsrRs

,

Otot “ rOs ` rORs “ rOs ` K2rOsrRs “ rOsp1` K2rRsq .

Therefore, rOs
Otot

“ 1
1`K2rRs

. “Proportion of free (unbounded) operator sites.”

Let Rtot be total concentration of the repressor protein (constant):

Rtot “ rRs ` rORs ` rRAns

Assume only a few molecules of operator sites per cell: rORs ! max
 

rRs, rRAns
(

:

Rtot « rRs ` rRAns “ rRs ` K1rRsrAs
n

Eliminating rRAns, we get rRs “
Rtot

1` K1rAsn
.

Now, the proportion of free operator sites is:

rOs

Otot
“

1

1` K2rRs
“

1

1` K2p
Rtot

1`K1rAsn
q
¨

1` K1rAsn

1` K1rAsn
“

1` K1rAsn

K ` K1rAsn
loooooomoooooon

:“f prAsq

,

where K “ 1` K2Rtot .

M. Macauley (Clemson) DDE models of gene regulation Algebraic Systems Biology 9 / 29

mailto:macaule@clemson.edu


Modeling of lactose repressor dynamics

Summary

The proportion of free operator sites is

rOs

Otot
“

1` K1rAsn

K ` K1rAsn
loooooomoooooon

:“f prAsq

, where K “ 1` K2Rtot .

Remarks

The function f prAsq is (almost) a Hill function of coefficient n.

f prAs “ 0q “ 1
K
ą 0 “basal level of gene expression.”

f is increasing in rAs, when rAs ě 0.

lim
rAsÑ8

f prAsq “ 1 “with lots of allolactose, gene expression level is max’ed.”
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Modeling time-delays

The production of mRNA from DNA via transcription is not instantaneous; suppose it takes
time τ ą 0.

Thus, the production rate of mRNA is not a function of allolactose at time t, but rather at
time t ´ τ .

Suppose protein P decays exponentially, and its concentration is pptq.

dp

dt
“ ´µp ùñ

ż t

t´τ

dp

p
“ ´µ

ż t

t´τ
dt .

Integrating yields

ln pptq
ˇ

ˇ

ˇ

t

t´τ
“ ´µt

ˇ

ˇ

ˇ

t

t´τ
dt “ ln

pptq

ppt ´ τq
“ ´µrt ´ pt ´ τqs “ ´µτ.

Exponentiating both sides yields pptq
ppt´τq

“ e´µτ , and so

pptq “ e´µτ ppt ´ τq
looomooon

:“pτ

.
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A 3-variable ODE model of the lac operon

Consider the following 3 quantities, which represent concentrations of:

Mptq “ mRNA,

Bptq “ β-galactosidase,

Aptq “ allolactose.

Assumption: Internal lactose (L) is available and is a parameter.

The model (Yildirim and Mackey, 2004)

dM

dt
“ αM

1` K1pe´µτMAτM q
n

K ` K1pe´µτMAτM q
n
´ rγMM

dB

dt
“ αBe

´µτBMτB ´ rγBB

dA

dt
“ αAB

L

KL ` L
´ βAB

A

KA ` A
´ rγAA

M

A

B

L

These are delay differential equations, with discrete time delays due to the transcription and
translation processes.

There should (?) be a self-loop X at M, B, and A, but we’re omitting them for clarity.
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A 3-variable ODE model of the lac operon

ODE for β-galactosidase (B)

dB

dt
“ αBe

´µτBMτB ´ rγBB,

Justification:

rγBB “ γBB ` µB represents loss due to β-galactosidase degredation and dilution from
bacterial growth.

Production rate of β-galactosidase, is proportional to mRNA concentration.

τB “ time required for translation of β-galactosidase from mRNA, and
MτB :“ Mpt ´ τBq.

e´µτBMτB accounts for the time-delay due to translation.

M. Macauley (Clemson) DDE models of gene regulation Algebraic Systems Biology 13 / 29

mailto:macaule@clemson.edu


A 3-variable ODE model of the lac operon

ODE for mRNA (M)

dM

dt
“ αM

1` K1pe´µτMAτM q
n

K ` K1pe´µτMAτM q
n
´ rγMM

Justification:

rγMM “ γMM ` µM represents loss due to mRNA degredation and dilution from
bacterial growth.

Production rate of mRNA [=expression level!] is proportional to the fraction of free
operator sites,

rOs

Otot
“

1` K1An

K ` K1An
“ f pAq.

τM “ time required for transcription of mRNA from DNA, and AτM :“ Apt ´ τMq.

The term e´µτMAτM accounts for the time-delay due to transcription.
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A 3-variable ODE model of the lac operon

ODE for allolactose (A)

dA

dt
“ αAB

L

KL ` L
´ βAB

A

KA ` A
´ rγAA

Justification:

rγAA “ γAA` µA represents loss due to allolactose degredation and dilution from
bacterial growth.

The first two terms models the enzyme-substrate reactions involving the enzyme
β-galactosidase.

1. Lactose into allolactose:
L` B ÝáâÝ LB ÝÑ A` B

has solution
drAs

dt
“

αABrLs

KL ` rLs
.

2. Allolactose into glucose and galactose (both C6H12O6):

A` B ÝáâÝ AB ÝÑ B ` Glu ` Gal .

has solution
drGlus

dt
“

drGals

dt
“

βABrAs

KA ` rAs
“ ´

drAs

dt
.
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A 3-variable ODE model of the lac operon

Steady-state analysis

To find the steady states, we must solve the nonlinear system of equations:

0 “ αM
1` K1pe´µτMAτM q

n

K ` K1pe´µτMAτM q
n
´ rγMM

0 “ αBe
´µτBMτB ´ rγBB

0 “ αAB
L

KL ` L
´ βAB

A

KA ` A
´ rγAA

This was done by Yildirim et al. (2004). They set L “ 50ˆ 10´3 mM, which was in the
“bistable range.”

They estimated the parameters through an extensive literature search.

Finally, they estimated µ “ 3.03ˆ 10´2 min´1 by fitting ODE models to experimental data.

Steady states A˚ (mM) M˚ (mM) B˚ (mM)
I. 4.27ˆ 10´3 4.57ˆ 10´7 2.29ˆ 10´7 basal (stable)
II. 1.16ˆ 10´2 1.38ˆ 10´6 6.94ˆ 10´7 medium (unstable)
III. 6.47ˆ 10´2 3.28ˆ 10´5 1.65ˆ 10´5 high (stable)
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One-parameter bifurication diagram of the 3-variable ODE model

Figure: The fixed points of the allolactose concentration A˚ in ODE model (6.47ˆ 10´2, 1.16ˆ 10´2,

and 4.27ˆ 10´3mM) as a function of the parameter L (lactose). For a range of L concentrations, there
are 2 stable steady states, the phenomenon of bistability.
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3-variable ODE model

Figure: Numerical solutions of Mptq (mRNA), Bptq (β-galactosidase), and Aptq (allolactose), using

L “ 50ˆ 10´3.
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5-variable ODE model
Consider the following 5 variables, which represent concentrations of:

Mptq “ mRNA,

Bptq “ β-galactosidase,

Aptq “ allolactose.

Pptq “ lac permease.

Lptq “ intracellular lactose.

The model (Yildirim and Mackey, 2004)

dM

dt
“ αM

1` K1pe´µτMAτM q
n

K ` K1pe´µτMAτM q
n
` Γ0 ´ rγMM

dB

dt
“ αBe

´µτBMτB ´ rγBB

dA

dt
“ αAB

L

KL ` L
´ βAB

A

KA ` A
´ rγAA

dP

dt
“ αPe

´µpτB`τP qMτB`τP ´ rγPP

dL

dt
“ αLP

Le

KLe ` Le
´ βLeP

L

KLe ` L
´ αAB

L

KL ` L
´ rγLL

M

A

B L

P

Le
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5-variable ODE model

dM

dt
“ αM

1` K1pe´µτMAτM q
n

K ` K1pe´µτMAτM q
n
` Γ0 ´ rγMM

dB

dt
“ αBe

´µτBMτB ´ rγBB

dA

dt
“ αAB

L

KL ` L
´ βAB

A

KA ` A
´ rγAA

dP

dt
“ αPe

´µpτB`τP qMτB`τP ´ rγPP

dL

dt
“ αLP

Le

KLe ` Le
´ βLeP

L

KLe ` L
´ αAB

L

KL ` L
´ rγLL

ODEs for M, B, A, and P

The only difference in the ODE for M is the extra term Γ0 which describes the basal
transcription rate (Le “ 0).

The ODEs for B and A are the same as in the 3-variable model.

The ODE for P is very similar to the one for B:

production rate of lac permease 9 mRNA concentration, with a time-delay.

the 2nd term accounts for loss due to degredation and dilution.
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5-variable ODE model

ODE for lactose (L)

dL

dt
“ αLP

Le

KLe ` Le
´ βLeP

L

KL1
` L

´ αAB
L

KL ` L
´ rγLL,

Justification:

The first term models the transport of lactose by lac permease into the cell:

Le ` P ÝáâÝ PLe ÝÑ P ` L

The second term models the transport lactose by lac permease out of the cell:

L` P ÝáâÝ PL ÝÑ P ` Le

The 3rd term describes the reaction of Lactose into allolactose catalyzed by
β-galactosidase:

L` B ÝáâÝ LB ÝÑ A` B

the 4th term accounts for loss due to degredation and dilution.
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A 5-variable ODE model

To find the steady states, we set M 1 “ A1 “ B 1 “ L1 “ P 1 “ 0 and solve the resulting
nonlinear system of equations.

This was done by Yildirim et al. (2004). They set Le “ 50ˆ 10´3 mM, in the “bistable
range.”

They also estimated the parameters through an extensive literature search.

Finally, they estimated µ “ 2.26ˆ 10´2 min´1 by fitting the ODE models to experimental
data.

Fixed point A˚ (nM) M˚ (mM) B˚ (mM) L˚ (mM) P˚ (mM)
High (stable) 3.10ˆ 10´1 5.80ˆ 10´4 3.92ˆ 10´4 2.30ˆ 10´1 8.09ˆ 10´3

Med (unstable) 2.64ˆ 10´2 7.58ˆ 10´6 5.13ˆ 10´6 2.06ˆ 10´1 1.05ˆ 10´4

Low (stable) 7.85ˆ 10´3 2.48ˆ 10´6 1.68ˆ 10´6 1.69ˆ 10´1 3.46ˆ 10´5
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One-parameter bifurication diagram of the 5-variable ODE model

Figure: The fixed points of the allolactose concentration A˚ in ODE model (3.10ˆ 10´1, 2.64ˆ 10´2,

and 7.85ˆ 10´3mM) as a function of the parameter Le (external lactose). For a range of L
concentrations, there are 2 stable steady states, the phenomenon of bistability.
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5-variable ODE model

Figure: Numerical solutions of mRNA, β-galactosidase, allolactose, lac permease, and lactose
concentrations, using Le “ 50ˆ 10´3.
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A model of the arabinose (ara) operon (Yildirim, 2012)

Variables. Aptq, Eptq, and F ptq are concentrations of intracellular arabinose, araE mRNA,
and araFGH mRNA, respectively.

Constants.

Ae is concentration of extracellular arabinose.

γA, γE , and γF are degradation rates.

µ describes loss of concentration due to cell growth.

VE , VF , VmE VmF , and KE , KF , KmE , and KmF arise from Michaelis-Menten functions.

Model.

A1ptq “
AeVEEptq

KE ` Ae
`

AFVFF ptq

KF ` Ae
´ pµ` γAqAptq

E 1ptq “ αE `
VmE pAptqq

n

Kn
mE
` pAptqqn

´ pµ` γE qEptq

F 1ptq “ αF `
VmF pAptqq

n

Kn
mF
` pAptqqn

´ pµ` γF qF ptq.
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A model of the tryptophan (trp) operon (Santillán/Mackey, PNAS 2001)

Model.

O1F ptq “
Kr

Kr ` RApT q

`

µO ´ kpPrOF ptq ´ OF pt´τpqe
´µτp s

˘

´ µOF ptq

M 1
F ptq “ kpPOF pt´τmqe

´µτm p1´ ApT qq ´ kρρ
“

MF ptq ´MF pt´τpqe
´µτρ

‰

´ pkdD ` µqMF ptq

E 1ptq “
1

2
kρρMF pt´τeqe

´µτe ´ pγ`µqEptq

T 1ptq “ KEApE ,T q ´ GpT q ` F pT ,Textq ´ µT ptq

Aptq “ bp1´ e´Tptq{c q, RApT q “
T ptq

T ptq ` Kt
R, GpT q “ g

T ptq

T ptq ` Kg
.

EApE ,T q “
K

nH
i

K
nH
i ` T nH ptq

Eptq, F pT ,Textq “ d
Text

e ` Text r1` T ptq{f s
.
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A model of the tryptophanse (tna) operon (Orozco-Gómez et al., 2019)

Variables. Aptq, Bptq, and W ptq are concentrations of tryptophanase (TnaA), the TnaB
permease, and intracellular tryptophan.

Constants.

We and Ge are concentrations of extracellular tryptophan and glucose.

kA and kB are rate constants from mass-action kinetics.

γA and γB model protein degradation; µ models dilution from cellular growth.

PA is a sigmoidal function that accounts for catabolite repression.

Model.
A1 “ kAPG pGeqPW pW q ´ pγA ` µqA

B 1 “ kBPG pGeqPW pW q ´ pγB ` µqB

W 1 “ pα` βBqWe ´ pδ ` εAPApGe ,Weq ` µqW .

This model suggests that glucose and tryptophan regulate TnaA via a common signaling
pathway.

Experimental results suggest that it exhibits bistability; this model provides further evidence.

A Boolean model (I. Deal et al., 2023) of this operon also showed bistabilty.
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DDE mathematical models of biological systems is transdisplinary!

The researchers involved in this work have diverse backgrounds in math, science, and
engineering.

Necmettin Yildirim is an applied mathematician.

Michael Mackey has a PhD in Physiology and Biophysics. He and Leon Glass (PhD
Chemistry) developed the the Mackey-Glass equations that model blood cells:

dPptq

dt
“

β0θ
n

θn ` Ppt ´ τqn
´ γPptq, and

dPptq

dt
“

β0θ
nPpt ´ τq

θn ` Ppt ´ τqn
´ γPptq.

Moisés Santillán has PhD in Physics.

Some of the co-authors of the tna operon model paper are in Biomedial Engineering and
Physics.

The Mackey-Glass equations were published in Science.

The trp operon model was published in Proc. Natl. Acad. Sci.

lac operon models (Yildirim/Mackey, and Yildirim et al.) were published in Biophys J.
and Chaos and J R Soc Interface.

The ara operon model was published in Mol. Biosyst.
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