Advanced features of Boolean models

Matthew Macauley

School of Mathematical and Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Algebraic Systems Biology

Overview

In this section, we'll see how to add the following features to Boolean models:

- medium levels of protein concentation;
- bistability under medium concentrations;
- time-delays due to cellular processes.
- dilution of protein concentation due to cellular growth;
- degradation (or decay) of protein concentration;

We've already seen how ODE models can incorporate these features.

We will start with a published Boolean model of the lac operon that exhibits bistability.

Then, we will build Boolean models derived from the 3-variable and 5-variable ODE models of the *lac* operon, with these advanced features.

Medium concentrations and Bistability

In order for a *lac* operon model to exhibit bistability, it must be able to incorporate medium levels of concentration.

One way to do this is to work over $\mathbb{F}_3 = \{0, 1, 2\}$. However, this increases the state space size from 2^n to 3^n .

Some models have Boolean and ternary variables, but this lacks a nice algebraic framework.

GINsim is able to handle such logical models.

An alternative is to introduce a new variable L_m meaning "at least medium levels" of lactose. Clearly, L=1 implies $L_m=1$.

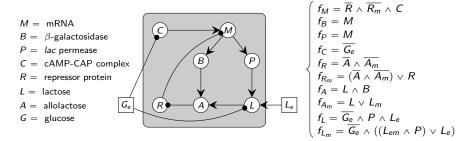
In other words:

- High lactose: L = 1, $L_m = 1$.
- Medium lactose: L = 0, $L_m = 1$.
- Low lactose levels: L = 0, $L_m = 0$.

We can ignore any state for which L = 1, $L_m = 0$.

A Boolean network model of the *lac* operon

Consider the following Boolean network model, which was published in Veliz-Cuba / Stigler (2011).



Comments

- The shaded region represents the cell.
- Circles denote variables, and squares denote parameters.
- The subscript *e* denotes extracellular concentrations.
- \blacksquare The subscript m denotes medium concentration.

Analyzing our Boolean network

Now, we need to find the fixed point(s) for all six possible parameter vectors, (G_e, L_e, L_{em}) .

We can disregard the two cases where $L_e = 1$ and $L_{em} = 0$.

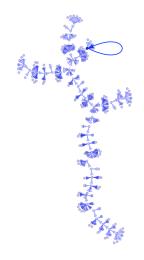
There are several (freely available) ways we can analyze systems like this:

- Use the BoolNet package in R to compute the fixed points, limit cycles, or plot the phase space. (Lots of additional capabilities.)
- Use a computer algebra package (Macaulay2, Singular, Sage) to convert the functions into polynomials, and compute the fixed points using Gröbner bases.
- Use Cyclone to nicely visualize the phase space with the nodes labeled as Boolean strings.
- Use GINsim (Gene Interaction Network simulation) to compute the fixed points and visualize the phase space.

All of these have their advantages and disadvantages.

Fixed point analysis and bistability

Here is the phase space with $(G_e, L_e, L_{em}) = (0, 0, 1)$, generated with BoolNet.



> print(getBasinOfAttraction(lacAttractorsBistable,2))

- prince(gecoust	HOTACCI GCCLO	in Lucheci decoi si	, LUCADEC, LUJ
State	Next state	Attr. basin #	trans. to attr.
1101001001 =>	1111000101	2	1
1111001001 =>	1111000101	2	1
1101000101 =>	1111000101	2	1
1111000101 =>	1111000101	2	0
1101001101 =>	1111000101	2	1
1111001101 =>	1111000101	2	1

Genes are encoded in the following order: M P B C R Rm A Am L Lm

Fixed point analysis and bistability

Computing the fixed point(s) for the other 5 initial conditions is an easy task for a computer.

(G_e, L_e, L_{em})	М	В	P	С	R	R _m	Α	A_m	L	L _m	operon
(1,0,0) (1,0,1) (1,1,1)	0	0	0	0	1	1	0	0	0	0	OFF
(0,0,0)	0	0	0	1	1	1	0	0	0	0	OFF
(0, 1, 1)	1	1	1	1	0	0	1	1	1	1	ON
(0, 0, 1)	0	0	0	1	1	1	0	0	0	0	OFF
	1	1	1	1	0	0	0	1	0	1	ON

Suppose glucose or lactose are both absent ($L_e = L_{em} = G_e = 0$), so the operon is OFF:

$$(M, P, B, C, R, R_m, A, A_m, L, L_m) = (0, 0, 0, 1, 1, 1, 0, 0, 0, 0).$$

Now, let's change L_{em} from 0 to 1, increasing lactose to medium. This is in the basin of the "low" bistable fixed point, so the operon remains OFF.

Conversely, suppose lactose concentration is high ($L_e = L_{em} = 1$), and so the operon is ON:

$$(M, P, B, C, R, R_m, A, A_m, L, L_m) = (1, 1, 1, 1, 0, 0, 0, 1, 0, 1).$$

Now, let's change L_e from 1 to 0, reducing lactose levels to medium. This is in the basin of the "high" bistable fixed point, so the operon remains ON.

Time delay of activation

Suppose a protein A activates production of X, delayed by time τ (n steps).

We can introduce new "time-keeping" variables $A_1, A_2, \ldots, A_{n-1}$, with transition functions:

$A_1(t+1) = A(t)$	"X off; A switches on"							"X on; A switches off"									
$A_1(t+1) = A(t)$ $A_2(t+1) = A_1(t)$			A_1									A_2					
, , , , ,	t = 0								t = 0	0	1	1	1	1	1		
$A_3(t+1) = A_2(t)$	t = 1	1	1	0	0	0	0		t = 1	0	0	1	1	1	1		
	t=2	1	1	1	0	0	0		t = 2	0	0	0	1	1	1		
:	t = 3	1	1	1	1	0	0		t = 3	0	0	0	0	1	1		
$A_{n-1}(t+1) = A_{n-2}(t)$	t=4								t = 4								
$X(t+1) = A_{n-1}(t)$	t = 5	1	1	1	1	1	1		t = 5	0	0	0	0	0	0		
	"n = 5 s	seco	onds	later	, X t	turns	on'	•	" $n = 5$	seco	nds	later	Xt	urns	off"		

Though this increases the size of the state space, we can disregard "most" of the states.

For example, any global state with $(A_1, A_2, A_3, A_4) = (1, 0, 1, 0)$ is nonsensical.

One downside: it may not be realistic to assume that A toggling $0 \to 1$ vs. $1 \to 0$ will have the same time delay.

Time delay of activation

Suppose a protein A activates production of X, delayed by time τ (n steps).

But now, once A is shut off, X should be off the next timestep due to degredation.

This can be modeled by changing the update functions as shown.

"n = 5 seconds later. X turns on"

"n = 1 seconds later, X turns off"

Though this increases the size of the state space, we can disregard "most" of the states.

For example, $(A_1, A_2, A_3, A_4) = (1, 0, 1, 0)$ is nonsensical.

 $X(t+1) = A_{n-1}(t) \wedge A(t)$

Time delay of inhibition

Let's repeat this, but now a protein R inhibits production of X, in one timestep.

However, once R is removed, then X will return, but delayed by time τ (n steps).

This can be modeled by changing the update functions as shown.

$$R_1(t+1) = \overline{R(t)}$$

$$R_2(t+1) = R_1(t) \land \overline{R(t)}$$

$$R_3(t+1) = R_2(t) \land \overline{R(t)}$$

$$\vdots$$

$$R_{n-1}(t+1) = R_{n-2}(t) \land \overline{R(t)}$$

$$X(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$X(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$X(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$R_{n-1}(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$X(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$R_{n-1}(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$X(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$X(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

$$R_{n-1}(t+1) = R_{n-1}(t) \land \overline{R(t)}$$

"X off; R switches off"

"n = 5 seconds later, X turns on"

"X on: R switches on"

"n = 1 seconds later, X turns off"

If we wanted both $0 \to 1$ and $1 \to 0$ time delays to be n steps, we could replace each

$$R_{i+1}(t+1) = R_i(t) \wedge \overline{R(t)}$$
 with $R_{i+1}(t+1) = R_i(t)$.

Dilution and degradation

Suppose A regulates the production of X in 1 step: A(t) = 1 implies X(t+1) = 1.

Suppose that the loss of X due to dilution and degradation takes n timesteps.

We can model this by introducing new variables $X_1^{\downarrow}, X_2^{\downarrow}, \dots, X_{n-1}^{\downarrow}$.

Properties

- (i) If Y(t)=0 and X(t)=1, then $X_1^\downarrow(t+1)=1$. ("X has been reduced once by dilution & degradation.")
- (ii) If Y(t)=0 and $X_{i-1}^{\downarrow}(t)=1$, then $X_i^{\downarrow}(t+1)=1$. ("X has been reduced i times by dilution & degradation.")
- (iii) The number of "decay variables" is determined by the number of timesteps required to reduce [X] below the discretation threshold.

Thus, X(t + 1) = 1 when either of the following holds:

- Y(t) = 1 (new amount will be produced by t + 1),
- $X(t) \wedge \overline{X_{n-1}^{\downarrow}(t)} = 1$ (previous amounts of X still available).

$$X(t+1) = Y(t) \vee \left(X(t) \wedge \overline{X_n^{\downarrow}(t)}\right)$$

Dilution and degradation

Let's now see an explicit example of this. Suppose that:

- A regulates the production of X in 1 step: A(t) = 1 implies X(t+1) = 1.
- the loss of X due to dilution and degradation takes n timesteps.

$$\begin{array}{c} X_{1}^{\downarrow}(t+1) = \overline{A(t)} \wedge X(t) & \text{``X off; A switches on''} & \text{``X off} \\ X_{2}^{\downarrow}(t+1) = \overline{A(t)} \wedge X_{1}^{\downarrow}(t) & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=0 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=0 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X_{4}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X_{2}^{\downarrow} \mid X_{3}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X}{t=1 \mid 0 \mid 0} & \frac{\mid A \mid X_{1}^{\downarrow} \mid X}{t=1 \mid 0$$

"X on; A switches off"

	A	X_1^{\downarrow}	X_2^{\downarrow}	X_3^{\downarrow}	X_4^{\downarrow}	Х
t = 0	0	0	0	0	0	1
t = 1	0	1	0	0	0	1
t = 0 $t = 1$ $t = 2$	0	1	1	0	0	1
t = 3	0	1	1	1	0	1
t = 4	0	1	1	1	1	1
t = 3 $t = 4$ $t = 5$	0	1	1	1	1	0

"n = 5 seconds later, X turns off"

Once again, this increases the state space size, but we can disregard "most" states.

For example, $(X_1^{\downarrow}, X_2^{\downarrow}, X_3^{\downarrow}, X_4^{\downarrow}) = (1, 0, 1, 0)$ is nonsensical.

In some sense, dilution and degradation are "dual" to time delays of activiation and inhibition.

Estimating constants for our Boolean model

3-variable ODE model of the lac operon (Yildirim and Mackey, 2004)

Let M(t)= mRNA, $B(t)=\beta$ -galactosidase, and A(t)= allolactose (concentrations), respectively.

$$\begin{split} \frac{dM}{dt} &= \alpha_M \frac{1 + K_1 (e^{-\mu \tau_M} A_{\tau_M})^n}{K + K_1 (e^{-\mu \tau_M} A_{\tau_M})^n} - \widetilde{\gamma_M} M \\ \frac{dB}{dt} &= \alpha_B e^{-\mu \tau_B} M_{\tau_B} - \widetilde{\gamma_B} B \\ \frac{dA}{dt} &= \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \widetilde{\gamma_A} A \end{split}$$

We need to estimate these rate constants and time delays from the literature.

- Time delays: $\tau_M = .10$ min, $\tau_B = 2.00$ min.
- Degradation rates are harder to determine experimentally, and they vary widely in the literature. Sample values:

$$\left\{ \begin{array}{l} \gamma_A = .52 \; \mathrm{min}^{-1}, \quad .0135 \; \mathrm{min}^{-1}, \quad .00018 \; \mathrm{min}^{-1} \\ \gamma_B = .00083 \; \mathrm{min}^{-1}, \\ \gamma_M = .411 \; \mathrm{min}^{-1}, \\ \mu \in (.0045, \; .0347) \end{array} \right.$$

Estimating constants for our Boolean model

Approach

We'll select "middle of range" estimates for the rate constants:

$$\mu = .03 \text{ min}^{-1}$$
,

$$\mathbf{P}$$
 $\gamma_A = .014 \ \mathrm{min}^{-1}$ \Longrightarrow $\widetilde{\gamma_A} = \gamma_A + \mu = .044$,

Degradation is assumed to be exponential decay: x' = -kx implies $x(t) = Ce^{-kt}$.

The half-life is the time t such that:

$$x(t) = Ce^{-kt} = .5C \implies e^{-kt} = .5 \implies -kt = \ln \frac{1}{2} \implies t = \frac{\ln 2}{k}$$

Half-lives

$$\widetilde{h_A} = \frac{\ln 2}{\widetilde{\gamma_A}} = 15.753$$
 (approx. 1 time-step to decay)

$$\widetilde{h_B} = \frac{\ln 2}{\widetilde{\gamma_B}} = 22.360$$
 (approx. 2 time-steps to decay)

$$ightharpoonup \widetilde{h_M} = rac{\ln 2}{\widetilde{\gamma_M}} = 1.5$$
 (approx. 0 time-steps to decay)

A Boolean model incorporating dilution and degradation

Model assumptions

- Variables are M, B, A.
- Glucose absent. Intracellular lactose present, two parameters: L and L_m .
- Time-step \approx 12 min.
- Ignore (all \ll 12): $\tau_M = .10$ min, $\tau_B = 2$ min, $\widetilde{h_M} = 1.572$ min.
- Introduce variables for dilution and degradation:
 - A_1^{\downarrow} (since $\widetilde{h_A} \approx 15.8 \approx 1$ timestep)
 - B_1^{\downarrow} , B_2^{\downarrow} (since $\widetilde{h_B} \approx 22.4 \approx 2$ timesteps)

Proposed model

$$\begin{array}{ll} f_{M} = A & f_{B} = M \vee \left(B \wedge \overline{B}_{2}^{\downarrow} \right) \\ f_{A} = \left(B \wedge L_{m} \right) \vee L \vee \left(A \wedge \overline{A}_{1}^{\downarrow} \wedge \overline{B} \right) & f_{B_{1}^{\downarrow}} = \overline{M} \wedge B \\ f_{A_{1}^{\downarrow}} = \left(\left(\overline{B} \vee \overline{L_{m}} \right) \wedge \overline{L} \right) \wedge A & f_{B_{2}^{\downarrow}} = \overline{M} \wedge B_{1}^{\downarrow} \end{array}$$

Most of the functions should be self-explanatory.

A Boolean model incorporating dilution and degradation

Justification for f_A

$$f_A = (B \wedge L_m) \vee L \vee (A \wedge \overline{A}_1^{\downarrow} \wedge \overline{B})$$

There are 3 ways for allolactose to be available at t + 1:

- (i) β -galactosidase and at least medium levels of lactose are present;
- (ii) high levels of lactose (assume basal concentrations of β -galactosidase);
- (iii) Enough allolactose is present so that it's not degraded below the threshold, and no β -galactosidase is present.

Let's write our model into polynomials form, with parameters (L, L_m) and variables $(x_1, x_2, x_3, x_4, x_5, x_6) = (M, A, A_1^{\downarrow}, B, B_1^{\downarrow}, B_2^{\downarrow})$:

$$\begin{array}{ll} f_M = A & f_1 = x_2 \\ f_A = (B \wedge L_m) \vee L \vee \left(A \wedge A_1^{\downarrow} \wedge \overline{B}\right) & f_2 = x_2(1+x_3)(1+x_4) + (L_mx_4 + L + x_4LL_m) \\ + x_2(1+x_3)(1+x_4)(L_mx_4 + L + x_4LL_m) \\ + f_{A_1^{\downarrow}} = \left((\overline{B} \vee \overline{L_m}) \wedge \overline{L}\right) \wedge A & f_3 = (1+x_4L_m)(1+L)x_2 \\ f_B = M \vee \left(B \wedge \overline{B}_2^{\downarrow}\right) & f_4 = x_1 + x_4(1+x_6) + x_1x_4(1+x_6) \\ f_{B_1^{\downarrow}} = \overline{M} \wedge B & f_5 = (1+x_1)x_4 \\ f_{B_2^{\downarrow}} = \overline{M} \wedge B_1^{\downarrow} & f_6 = (1+x_1)x_5 \end{array}$$

Using Macaulay2 to compute the fixed points (low lactose)

```
R = ZZ/2[M.A.A1.B.B1.B2]:
I = ideal(M^2-M,A^2-A,A1^2-A1,B^2-B,B1^2-B1,B2^2-B2);
Q = R/I:
RingElement | RingElement :=(x,y)->x+y+x*y;
RingElement & RingElement :=(x,v)->x*v:
L = O_Q; Lm = OQ:
fM = A;
fA = (B \& Lm) | L | (A \& (1+A1) \& (1+B));
fA1 = (((1+B) | (1+Lm)) & (1+L)) & A:
fB = M \mid (B \& (1+B2));
fB1 = (1+M) \& B:
fB2 = (1+M) \& B1;
I = ideal(fM+M, fA+A, fA1+A1, fB+B, fB1+B1, fB2+B2)
G = gens gb I
```

Output: (B2 B1 B A1 A M)

Conclusion: We have
$$B_2^{\downarrow}=B_1^{\downarrow}=B=A_1^{\downarrow}=A=M=0$$
. There is a unique fixed point, $(M,A,A_1^{\downarrow},B,B_1^{\downarrow},B_2^{\downarrow})=(0,0,0,0,0,0)$.

This is exactly what we expect: the operon is OFF.

Using Macaulay2 to compute the fixed points (high lactose)

```
R = ZZ/2[M.A.A1.B.B1.B2]:
    I = ideal(M^2-M,A^2-A,A1^2-A1,B^2-B,B1^2-B1,B2^2-B2);
    Q = R/I:
    RingElement | RingElement :=(x,y)->x+y+x*y;
    RingElement & RingElement :=(x,v)->x*v:
    L = 1_Q; Lm = 1_Q;
    fM = A;
    fA = (B \& Lm) | L | (A \& (1+A1) \& (1+B));
    fA1 = (((1+B) | (1+Lm)) & (1+L)) & A:
    fB = M \mid (B \& (1+B2));
    fB1 = (1+M) \& B:
    fB2 = (1+M) \& B1;
    I = ideal(fM+M, fA+A, fA1+A1, fB+B, fB1+B1, fB2+B2)
    G = gens gb I
Output:
          (B2 B1 B+1 A1 A+1 M+1)
Conclusion: We have B_2^{\downarrow} = B_1^{\downarrow} = A_1^{\downarrow} and B = A = M = 1. There is a unique fixed point,
                                (M, A, A_1^{\downarrow}, B, B_1^{\downarrow}, B_2^{\downarrow}) = (0, 0, 0, 0, 0, 0).
```

This is exactly what we expect: the operon is OFF.

Using Macaulay2 to compute the fixed points (medium lactose)

```
R = ZZ/2[M.A.A1.B.B1.B2]:
I = ideal(M^2-M,A^2-A,A1^2-A1,B^2-B,B1^2-B1,B2^2-B2);
Q = R/I:
RingElement | RingElement :=(x,y)->x+y+x*y;
RingElement & RingElement :=(x,v)->x*v:
L = O_Q; Lm = 1_Q;
fM = A;
fA = (B \& Lm) | L | (A \& (1+A1) \& (1+B));
fA1 = (((1+B) | (1+Lm)) & (1+L)) & A:
fB = M \mid (B \& (1+B2));
fB1 = (1+M) \& B:
fB2 = (1+M) \& B1;
I = ideal(fM+M, fA+A, fA1+A1, fB+B, fB1+B1, fB2+B2)
G = gens gb I
```

Output: (B2 B1 A1 A+B M+B)

Conclusion: We have $B_2^{\downarrow} = B_1^{\downarrow} = A_1^{\downarrow} = 0$, and A = B = M. There are two fixed points, $(M, A, A_1^{\downarrow}, B, B_1^{\downarrow}, B_2^{\downarrow}) = (0, 0, 0, 0, 0, 0)$, and (1, 1, 0, 1, 0, 0).

In this case, the lac operon exhibits bistability.

Fixed points of our model and bistability

Here is a table showing the fixed points of our model, depending on whether extracellular lactose levels are low, medium, or high.

Inducer level	L	L _m	М	Α	A_1^{\downarrow}	В	B_1^{\downarrow}	B_2^{\downarrow}	operon
Low lactose	0	0	0	0	0	0	0	0	OFF
High lactose	1	1	1	1	0	1	0	0	ON
Medium lactose	0	1	0	0	0	0	0	0	OFF
Medium lactose	0	1	1	1	0	1	0	0	ON

Suppose lactose concentration is low ($L=L_m=0$), and so the operon is OFF. The current state is

$$(M, A, A_1^{\downarrow}, B, B_1^{\downarrow}, B_2^{\downarrow}) = (0, 0, 0, 0, 0, 0).$$

Now, let's change L_m from 0 to 1, increasing the lactose level to medium. We are now in the 3rd fixed point above, and so the operon is still OFF.

Conversely, suppose lactose concentration is high $(L = L_m = 1)$, and so the operon is ON. The current state is

$$(M, A, A_1^{\downarrow}, B, B_1^{\downarrow}, B_2^{\downarrow}) = (1, 1, 0, 1, 0, 0).$$

Now, let's change L from 1 to 0, reducing the lactose level to medium. This takes us to the 4th fixed point above, and so the operon is still ON.

A Boolean model incorporating dilution & degradation, and time-delays

Instead of the a "middle value" (.0135 min $^{-1}$), let's choose the high estimate $\gamma_A=.52$ min $^{-1}$.

This makes the half-life of A (which was $\widetilde{h_A} = 15.753$) much smaller:

$$\widetilde{h_A} = \frac{\ln 2}{\widetilde{\gamma_A}} = 1.260, \qquad \widetilde{h_B} = \frac{\ln 2}{\widetilde{\gamma_B}} = 22.360 \qquad \widetilde{h_M} = \frac{\ln 2}{\widetilde{\gamma_M}} = 1.5$$

In this case, let's choose a much smaller time-step (e.g., t = 1 min).

We can no longer ignore all of the time-delays, so we introduce the following new variables:

- M_1 , M_2 to model the delayed effect (by $\tau_B=2$ min) of mRNA on the production of β -galactosidase.
- A_1 to model the delayed action of A on the production of mRNA by $\tau_M = .1$ min.

We will use the following new variables to model dilution & degradation:

- M_1^{\downarrow} since $\widetilde{h_M} = 1.5$ is approximately 1 time-step.
- A_1^{\downarrow} since $\widetilde{h_A} = 1.26$ is approximately 1 time-step.
- $\blacksquare B_1^{\downarrow}$, B_2^{\downarrow} since loss of β -galactosidase is slower.

Remark

We really should use more variables, e.g., $B_1^{\downarrow}, B_2^{\downarrow}, \dots, B_{22}^{\downarrow}$ to accurately track the loss of β -galactosidase. However, we will argue shortly why this won't matter.

A Boolean model incorporating dilution & degradation, and time-delays

Proposed model

$$\begin{array}{lll} f_{M} = A_{1} \vee (M \wedge \overline{M}_{1}^{\downarrow}) & f_{A_{1}} = A \\ f_{M_{1}} = M & f_{A_{1}^{\downarrow}} = \left((\overline{B} \vee \overline{L_{m}}) \wedge \overline{L} \right) \wedge A \\ f_{M_{2}} = M_{1} \wedge M & f_{B} = M_{2} \vee \left(B \wedge \overline{B}_{2}^{\downarrow} \right) \\ f_{M_{1}^{\downarrow}} = \overline{A_{1}} \wedge M & f_{B_{1}^{\downarrow}} = \overline{M_{2}} \wedge B \\ f_{A} = (B \wedge L_{m}) \vee L \vee (A \wedge \overline{A}_{1}^{\downarrow} \wedge \overline{B}) & f_{B_{2}^{\downarrow}} = \overline{M_{2}} \wedge B_{1}^{\downarrow} \end{array}$$

Analysis of the long-term behavior of this model leads to similar results as the previous one.

Lactose	L	L _m	М	M_1	M ₂	M_1^{\downarrow}	В	B_1^{\downarrow}	B_2^{\downarrow}	Α	A_1	A_1^{\downarrow}
Low	0	0	0	0	0	0	0	0	0	0	0	0
High	1	1	1	1	1	0	1	0	0	1	1	0
Medium	0	1	0	0	0	0	0	0	0	0	0	0
Medium	0	1	1	1	1	0	1	0	0	1	1	0

A Boolean version of the 5-variable ODE model

5-variable ODE model (Yildirim and Mackey, 2004)

Let M(t)= mRNA, $B(t)=\beta$ -galactosidase, A(t)= allolactose, P(t)= lac permease, L(t)= lactose (concentrations). Extracellular lactose (L_e) is a parameter.

$$\begin{split} \frac{dM}{dt} &= \alpha_M \frac{1 + K_1 (e^{-\mu \tau_M} A_{\tau_M})^n}{K + K_1 (e^{-\mu \tau_M} A_{\tau_M})^n} + \Gamma_0 - \widetilde{\gamma_M} M \\ \frac{dB}{dt} &= \alpha_B e^{-\mu \tau_B} M_{\tau_B} - \widetilde{\gamma_B} B \\ \frac{dA}{dt} &= \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \widetilde{\gamma_A} A \\ \frac{dP}{dt} &= \alpha_P e^{-\mu (\tau_B + \tau_P)} M_{\tau_B + \tau_P} - \widetilde{\gamma_P} P \\ \frac{dL}{dt} &= \alpha_L P \frac{L_e}{K_{L_e} + L_e} - \beta_{L_e} P \frac{L}{K_{L_e} + L} - \alpha_A B \frac{L}{K_L + L} - \widetilde{\gamma_L} L \end{split}$$

We'll use the same estimates for degradation and delay constants as in the 3-variable model:

$$\mu=.03~\mathrm{min}^{-1}, \qquad \widetilde{\gamma_{A}}=\gamma+\mu=.044, \qquad \widetilde{\gamma_{B}}=\gamma+\mu=.031, \qquad \widetilde{\gamma_{M}}=\gamma+\mu=.441.$$

New degradation constants estimated at $\gamma_L=0.0~{\rm min}^{-1}$, and $\gamma_P=.65~{\rm min}^{-1}$. Delay constant estimate is $\tau_P=.83~{\rm min}$.

We need a new parameter to help distinguish high vs. medium extracellular lactose: Lem.

A Boolean version of the 5-variable ODE model

Model assumptions

- Variables are M, B, A, P, L.
- Glucose absent. Extracellular lactose present, two parameters: L_e and L_{em} .
- Ignore time-delays (Yildirim and Mackey showed that they do not affect bistability).
- Time-step ≈ 12 min.
- Ignore (all \ll 12): $\tau_M = .10$ min, $\tau_B = 2$ min, $\widetilde{h_M} = 1.572$ min.
- Introduce dilution & degradation variables: A_1^{\downarrow} , B_1^{\downarrow} , L_1^{\downarrow} , P_1^{\downarrow} .

Proposed model

$$\begin{split} f_{M} &= A \vee (M \wedge \overline{M}_{1}) & f_{B} = M \vee (B \wedge \overline{B}_{1}^{\downarrow}) \\ f_{M_{1}^{\downarrow}} &= \overline{A} \wedge M & f_{B_{1}^{\downarrow}} &= \overline{M} \wedge B \\ f_{A} &= (B \wedge L) \vee (L \wedge L_{e}) \vee (A \wedge \overline{A}_{1}^{\downarrow} \wedge \overline{B}) & f_{P} &= M \vee (P \wedge \overline{P}_{1}^{\downarrow}) \\ f_{A_{1}^{\downarrow}} &= (\overline{B} \vee \overline{L}) \wedge (\overline{L} \vee \overline{L_{e}}) \wedge A & f_{P_{1}^{\downarrow}} &= \overline{M} \wedge P \\ f_{L} &= ((P \wedge L_{em}) \vee L_{e}) \vee \left((L \wedge \overline{L}_{1}^{\downarrow}) \wedge (\overline{B} \wedge \overline{P}) \right) & f_{L_{1}^{\downarrow}} &= \left((\overline{P} \vee \overline{L_{em}}) \wedge \overline{L_{e}} \right) \wedge L_{e} \end{split}$$

A Boolean model incorporating dilution and degradation

Justification for f_A

$$f_A = (B \wedge L) \vee (L \wedge L_e) \vee (A \wedge \overline{A}_1^{\downarrow} \wedge \overline{B})$$

There are 3 ways for allolactose to be available at t + 1:

- (i) β -galactosidase and lactose are present.
- (ii) Internal lactose is present and the concentration of extracellular lacatose is high. This ensures that by time t+1, intracellular lactose concentration is high enough to find available trace amounts of β -galactosidase.
- (iii) The concentration of allolactose is high enough that it won't be reduced below the threshold due to dilution & degradation, or to conversion (by β -galactosidase) to glucose & galctose.

Justification for f_L

$$f_L = ((P \wedge L_{em}) \vee L_e) \vee ((L \wedge \overline{L}_1^{\downarrow}) \wedge (\overline{B} \wedge \overline{P}))$$

There are 3 ways for intracellular lactose to be available at t + 1:

- (i) Lac permease and extracellular lactose are available.
- (ii) There are high levels of extracellular lactose available (even if *lac* permease level is low).
- (iii) There is enough lactose in the cell that it won't be lost to dilution & degradaton, transport out, or conversion into allolactose (by β -galactosidase).

A Boolean model incorporating dilution and degradation

Model:

$$\begin{split} f_{M} &= A \vee (M \wedge \overline{M}_{1}^{\downarrow}) & f_{B} &= M \vee \left(B \wedge \overline{B}_{1}^{\downarrow}\right) \\ f_{M_{1}^{\downarrow}} &= \overline{A} \wedge M & f_{B_{1}^{\downarrow}} &= \overline{M} \wedge B \\ f_{A} &= (B \wedge L) \vee (L \wedge L_{e}) \vee \left(A \wedge \overline{A}_{1}^{\downarrow} \wedge \overline{B}\right) & f_{P} &= M \vee \left(P \wedge \overline{P}_{1}^{\downarrow}\right) \\ f_{A_{1}^{\downarrow}} &= \left(\overline{B} \vee \overline{L}\right) \wedge \left(\overline{L} \vee \overline{L_{e}}\right) \wedge A & f_{P_{1}^{\downarrow}} &= \overline{M} \wedge P \\ f_{L} &= ((P \wedge L_{em}) \vee L_{e}) \vee \left((L \wedge \overline{L}_{1}^{\downarrow}) \wedge (\overline{B} \wedge \overline{P})\right) & f_{L_{1}^{\downarrow}} &= \left((\overline{P} \vee \overline{L_{em}}) \wedge \overline{L_{e}}\right) \wedge L \end{split}$$

Fixed points:

Ext. Lactose	Le	L _{em}	М	M_1^{\downarrow}	В	B_1^{\downarrow}	Α	A_1^{\downarrow}	L	L_1^{\downarrow}	P	P_1^{\downarrow}
Low	0	0	0	0	0	0	0	0	0	0	0	0
High	1	1	1	0	1	0	1	0	1	0	1	0
Medium	0	1	0	0	0	0	0	0	0	0	0	0
Medium	0	1	1	0	1	0	1	0	1	0	1	0