## Basics of Boolean modeling

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Algebraic Systems Biology

#### The lac operon in E. coli



### Downsides of an ODE model

- Very mathematically technical.
- Too hard to solve explicitly. Numerical methods are needed.
- MANY experimentally determined parameters.
- Often, rate constants aren't known even up to orders of magnitude.

$$\frac{dM}{dt} = \alpha_M \frac{1 + K_1 (e^{-\mu \tau_M} A_{\tau_M})^n}{K + K_1 (e^{-\mu \tau_M} A_{\tau_M})^n} + \Gamma_0 - \widetilde{\gamma}_M M$$

$$\frac{dB}{dt} = \alpha_B e^{-\mu \tau_B} M_{\tau_B} - \tilde{\gamma}_B B$$

$$\frac{dA}{dt} = \alpha_A B \frac{L}{K_L + L} - \beta_A B \frac{A}{K_A + A} - \widetilde{\gamma}_A A$$

$$\frac{dP}{dt} = \alpha_P e^{-\mu(\tau_B + \tau_P)} M_{\tau_B + \tau_P} - \tilde{\gamma}_P P$$

$$\frac{dL}{dt} = \alpha_L P \frac{L_e}{K_{L_e} + L_e} - \beta_{L_e} P \frac{L}{K_{L_e} + L} - \alpha_A B \frac{L}{K_L + L} - \tilde{\gamma}_L L$$

## A Boolean approach

Let's assume everything is Boolean (0 or 1):

- Expression levels are high or basal (thousands of times lower).
- Gene products are present or absent.
- Enzyme concentrations are high or low.
- The probability of a repressor being activated is high  $(p \approx 1)$  or low  $(p \approx 0)$ .
- The operon is ON or OFF.

#### Motivating example

#### A statement like

"mRNA will be transcribed (M = 1) if the transcription factor is present (C = 1) and the repressor protein is inactivated (R = 0)"

can be modeled as

$$M(t+1) = C(t) \wedge \overline{R(t)}$$

We will assume that time is discretized: t = 0, 1, 2, ...

### A toy model of the *lac* operon

Parameters (constants):

■ *L<sub>e</sub>*: extracellar lactose ■ *G<sub>e</sub>*: extracellar glucose

Variables:

M: mRNA E: gene products L: intracellular lactose

Each variable has an update function:

• mRNA is transcribed (M = 1) if there is no extracellular glucose  $(G_e = 0)$  and either intracellular (L = 1) or extracellular lactose  $(L_e)$  is present:

$$M(t+1) = f_M = \overline{G_e} \wedge (L(t) \vee L_e).$$

The LacY and LacZ gene products (E = 1) will be translated if there are high levels of mRNA (M = 1):

$$E(t+1)=f_E=M(t).$$

- Lactose will be in the cell (L = 1) if there is no extracellular glucose  $(G_e = 0)$ , and either of the following holds:
  - Extracellular lactose is present  $(L_e = 1)$  and *lac* permease is available (E = 1).
  - Intracellular lactose is present (L = 1) but  $\beta$ -galactosiadase is absent (E = 0).

$$L(t+1) = f_L = \overline{G_e} \wedge \left[ (L_e \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right].$$

#### How to analyze a Boolean model

Our Boolean model is:

$$\begin{split} f_{M} &= \overline{G_{e}} \wedge (L(t) \vee L_{e}) \\ f_{E} &= M(t) \\ f_{L} &= \overline{G_{e}} \wedge \left[ (L_{e} \wedge E(t)) \vee (L(t) \wedge \overline{E(t)}) \right]. \end{split}$$

We will update these functions synchronously:



$$f: (M(t), E(t), L(t)) \longmapsto (M(t+1), E(t+1), L(t+1)).$$

The state space (or phase space) is the directed graph (V, T), where

$$V = \{ (M, E, L) \mid M, E, L \in \{0, 1\} \}, \qquad T = \{ (x, f(x)) \mid x \in V \}.$$

We need to compute this for all 4 possible parameter vectors  $(L_e, G_e) \in \{0, 1\}^2$ .

At the bare minimum, we should expect:

- Lactose absent  $\Rightarrow$  operon OFF,
- Lactose present, glucose absent  $\Rightarrow$  operon ON,
- Lactose and glucose present  $\Rightarrow$  operon OFF.

#### How to visualize the dynamics of a Boolean model

We can plot the state space using one of several software packages:

- The BoolNet library in R.
- **Cyclone**, available at https://github.com/discretedynamics/cyclone.
- GINsim (Gene Interaction Network simulation), available at http://ginsim.org/.

The function input of these varies, from Boolean functions (BoolNet) to polynomials (Cyclone), to truth tables (GINsim).

| Boolean operation | logical form   | polynomial form |
|-------------------|----------------|-----------------|
| AND               | $x \wedge y$   | ху              |
| OR                | $x \lor y$     | x + y + xy      |
| XOR               | $x \oplus y$   | x + y           |
| NOT               | $\overline{x}$ | 1 + x           |

A truth table is just a tabular representation of the entire function.

| x | у | $x \wedge y$ | $x \lor y$ | x + y + xy |
|---|---|--------------|------------|------------|
| 0 | 0 | 0            | 0          | 0          |
| 0 | 1 | 0            | 1          | 1          |
| 1 | 0 | 0            | 1          | 1          |
| 1 | 1 | 1            | 1          | 1          |

## Installing Cyclone: Simulation and Analysis of Finite Dynamical Systems

Cyclone was written by Elena Dimitrova, Adam Knapp, Brandlyn Stigler, and Michael Stillman.

It can be downloaded from: https://github.com/discretedynamics/cyclone.

Open a terminal (Mac or Linux) and navigate to the zipfile. Then type:

- > unzip cyclone-master.zip
- > cd cyclone-master
- > mkdir -p build
- > cd build
- > cmake ..
- > make

On a Mac, if you don't have cmake, go download and install it, and then type

> PATH="/Applications/CMake.app/Contents/bin":"\$PATH"

into the command-line.

### Running Cyclone: Simulation and Analysis of Finite Dynamical Systems

Create a text file titled lac-toy.pds with the following contents:

```
# lac operon toy example
NUMBER OF VARIABLES: 5
NUMBER OF STATES: 2
M = (NOT Ge) AND (L | Le)
E = M
L = (NOT Ge) AND ((Le AND E) | (L AND (NOT E)))
Le = Le
Ge = Ge
```

Next, run the following command:

> ./simFDS lac-toy.pds

This will create the two text files:

```
lac-toy-limitcycles.tex
lac-toy-statespace.dot
```

### Visualizing and analyzing cyclone output

This command requires Graphviz to be installed:

> dot -Tpng -o lac-toy.png lac-toy-statespace.dot

It creates a png file of the state space:



Recall the variable order  $(M, E, L, L_e, G_e)$ .

- A fixed point with M = E = L = 0 means that the operon is OFF.
- A fixed point with M = E = L = 1 means that the operon is ON.

# Summary so far

Gene regulatory networks consist of a collection of gene products that interact with each other to control a specific cell function.

Classically, these have been modeled quantitatively with differential equations (continuous space, continuous time).

Boolean models take a different approach. They are discrete-space, discrete-time models that are inherently qualitative.

The state space graph encodes the dynamics. The most important features are the fixed points, and a necessary step in model validation is to check that they are biologically meaningful.

The model of the lac operon shown here is a "toy model." Next, we will see more complicated models of the lac operon that capture intricate biological features of these systems.

Modeling with Boolean logic is a relatively new concept, first done in the 1970s. It is a popular research topic in the field of systems biology.

## A more refined model

Our first model only used 3 variables: mRNA (M), enzymes (E), and lactose (L).

Let's propose a new model with 5 variables:

 $\begin{array}{ll} M \ (\text{mRNA}): & f_M = A \\ \hline B \ (\beta\text{-galactosidase}): & f_B = M \\ \hline A \ (\text{allolactose}): & f_A = A \lor (L \land B) \\ \hline L \ (\text{intracellular lactose}): & f_L = P \lor (L \land \overline{B}) \\ \hline P \ (lac \ \text{permease}): & f_P = M \\ \end{array}$ 

#### Assumptions

- Extracellular lactose is always available.
- Extracellular glucose is always unavailable.
- Translation and transcription require one unit of time.
- Protein and mRNA degradation require one unit of time.
- Lactose metabolism require one unit of time.

## Model dynamics in Cyclone

Here is the state space of our 5-variable model:





## Model dynamics in the BoolNet package of $\mathbf{R}$





### Problems with our refined model

#### Boolean model

M (mRNA): $f_M = A$ B ( $\beta$ -galactosidase): $f_B = M$ A (allolactose): $f_A = A \lor (L \land B)$ L (intracellular lactose): $f_L = P \lor (L \land \overline{B})$ P (lac permease): $f_P = M$ 

#### Problems

- The fixed point (M, B, A, L, P) = (0, 0, 0, 0, 0) should not happen with lactose present but not glucose. [though let's try to justify this...]
- The fixed point (M, B, A, L, P) = (0, 0, 0, 1, 0) is not biologically feasible: it would describe a scenario where the bacterium does not metabolize intracellular lactose.

#### Conclusion

The model fails initial testing and validation, and is in need of modification. (HW)

### Examples of Boolean models of (mostly) molecular networks

- A. Veliz-Cuba and B. Stigler. Boolean models can explain bistability in the *lac* operon. *J. Comp. Biol.*, **18**(6):783–794, 2011.
- R. Albert, H.G. Othmer. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol., 223(1):1–18, 2003.
- L. Mendoza, D. Thieffry, and E. Alvarez-Buylla. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. *Bioinformatics*, 15(7):593–606, 1999.
- M. Davidich and S. Bornholdt. Boolean network model predicts cell cycle sequence of fission yeast. PloS ONE, 3(2):e1672, 2008.
- S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random Boolean network models and the yeast transcriptional network. *Proc. Natl. Acad. Sci.*, **100**(25):14796–14799, 2003.
- A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. *Bioinformatics*, 22(14):e124–e131, 2006.
- B. Stigler and H. Chamberlin. A regulatory network modeled from wild-type gene expression data guides functional predictions in caenorhabditis elegans development. BMC Syst. Biol., 6(1):77, 2012.
- A. Jenkins and M. Macauley. Bistability and asynchrony in a Boolean model of the L-arabinose operon in Escherichia coli. Bull. Math Biol., 79(8):1778–1795, 2017.
- L. Mendoza. A network model for the control of the differentiation process in Th cells. *Biosystems* 84(2):101–114, 2006.
- I. Deal, M. Macauley, and R. Davies. Boolean models of the transport, synthesis, and metabolism of tryptophan in Escherichia Coli. Bull. Math. Biol. 85(4), 29 pp., 2023.
- R. Robeva and D. Murrugarra. The spruce budworm and forest: a qualitative comparison of ODE and Boolean models. *Lett. Biomathematics* 3(1):75–92, 2016.
- F. Hammami, et al. Analysis of a logical regulatory network reveals how Fe-S cluster biogenesis is controlled in the face of stress. *Microlife* 4:uqad003, 2023.
- E.E. Allen, J.S. Fetrow, L.W. Daniel, S.J. Thomas, and D.J John. Algebraic dependency models of protein signal transduction networks from time-series data. J. Theor. Biol., 238(2):317–330, 2006.

# GINsim logical model repository

| GIN    | sim           |                  |           |              |                 | ser entry care   |
|--------|---------------|------------------|-----------|--------------|-----------------|------------------|
| HOME   | DOCUMENTATION | MODEL REPOSITORY | DOWNLOADS | PUBLICATIONS | COMPANION TOOLS | CONTACTS & TERMS |
| Home » |               |                  |           |              |                 |                  |

#### **Browse Models**

| Search by Keywords                      | Submitter                                        | Taxon Process                   |                                      |
|-----------------------------------------|--------------------------------------------------|---------------------------------|--------------------------------------|
|                                         |                                                  | · ·                             | ~ Apply                              |
| Title                                   |                                                  | Taxon - All terms               | Process - All terms                  |
| Asymmetric Cell Division in Cauloba     | acter Crescentus                                 | Bacterium, C. Crescentus        | Cell cycle, Asymmetric cell division |
| Boolean model of geroconversion         |                                                  | Mammal                          | Senescence                           |
| Budding yeast cell cycle (adapted fr    | rom Irons, 2009)                                 | Budding yeast, Yeast            | Cell cycle                           |
| Budding yeast cell cycle (Fauré et a    | I. 2009)                                         | Budding yeast, Yeast            | Cell cycle                           |
| Budding yeast cell cycle (Orlando et    | t al. 2008)                                      | Budding yeast, Yeast            | Cell cycle                           |
| Budding yeast exit module               |                                                  | Budding yeast, Yeast            | Cell cycle, Mitosis exit control     |
| Cell fate decision network in the AG    | S gastric cancer cell line (Flobak et al 2015)   | Mammal                          | Cancer                               |
| Cell-Fate Decision in Response to De    | eath Receptor Engagement                         | Mammal                          | Cell fate decision                   |
| Contribution of ROS and metabolic       | status to neonatal and adult CD8+ T cell activat | on Mammal, Human                | T-cell activation                    |
| Control of proliferation by oncogene    | es and tumor suppressors                         | Mammal                          | Cell fate decision                   |
| Control of Th1/Th2 cell differentiation | n                                                | Mammal                          | Differentiation                      |
| Control of Th1/Th2/Th17/Treg cells of   | lifferentiation                                  | Mammal                          | Differentiation                      |
| Control of Th1/Th2/Th17/Treg/Tfh/Th     | 19/Th22 cell differentiation                     | Blood cells, Mammal, T lymphocy | ytes Differentiation                 |
| Controlling the lysis-lysogeny decisi   | ion in the phage lambda                          | Phage Lambda                    | Lysis-lysogeny decision              |
| Core engine controlling the budding     | yeast cell cycle                                 | Budding yeast, Yeast            | Core engine, Cell cycle              |
|                                         | 1 2 3 4                                          | 5 next > last »                 |                                      |

Home | Documentation | Model Repository | Downloads | Publications | Companion Tools | Contacts & Terms

#### http://ginsim.org/models\_repository