Biological feedback

Matthew Macauley

Algebraic Systems Biology

Thomas' rules on biological feedback

In 1981, biologist René Thomas made the following conjectures.

Rule 1 (multistationarity \Rightarrow positive feedback)

A positive cycle in the wiring diagram is necessary for the existence of multiple steady states.

Rule 2 (sustained oscillations \Rightarrow negative feedback)

A negative cycle is a necessary condition for an attractor (stable steady state, limit cycle, or chaotic).

Conversely, when the wiring diagram is acyclic, f^n will be constant. This means that

"feedback cycles are the engines of complexity."

These ideas transcend modeling frameworks, and should hold for Boolean and ODE models.

- Thomas, R. (1981). On the relation between the logical structure of systems and their ability to generate multiple steady states and sustained oscillations. Series in Synergetics 9, 180–193.
- Thomas, R. and D'Ari, T. Biological Feedback. CRC Press, 1990 (updated 2006).

Thomas' Rule 1 in an ODE framework

Theorem (Cinquin/Demongeot, 2002)

Let $I_f = \int_T \left(\frac{F}{|F||}\right)^* \sigma$, where T is a hypersurface diffeomorphic to the unit sphere, such that int(T) is in the domain of f and contains all steady-states, and where σ is a volume form compatible with the canonical orientation of T. If f has at least $1 + (-1)^n I_f$ stable steady states, then $\mathcal{G}(f)$ has a positive circuit.

Theorem (Soulé, 2003)

Let $\Omega = \prod_{i=1}^{n} \Omega_i \subseteq \mathbb{R}^n$ be a product of open intervals, and $f : \Omega \to \mathbb{R}^n$ a differential map such that for each i, j and any $a \in \Omega$,

$$f_i(x) = f_i(a) + \sum_{j=1}^n \frac{\partial f_i}{\partial x_j}(a)(x_j - a_j) + o(||x - a||).$$

If f has ≥ 2 nondegenerate zeros in Ω , then $\exists a \in \Omega$ such that $\mathcal{G}(f)$ has a positive circuit.

- Cinquin, O., & Demongeot, J. (2002). Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol. 216(2), 229-241.
- Soulé, C. (2003). Graphic requirements for multistationarity. ComPlexUs 1(3), 123-133.
- Kaufman, M., Soule, C., & Thomas, R. (2007). A new necessary condition on interaction graphs for multistationarity. J. Theor. Biol. 248(4), 675-685.

Thomas' Rule 2 in an ODE framework

There are partial results of the differential version of Thomas' Rule 2.

Consider a differential equation

$$rac{dx}{dt}=f(x), \qquad D\subseteq \mathbb{R}^n, ext{ open \& convex}, \qquad f\in \mathcal{C}^1(D).$$

Theorem (Snoussi, 1998)

If x' = f(x) has a stable limit cycle and $\mathcal{G}(f)$ is complete, then $\mathcal{G}(f)$ has a negative loop of length ≥ 2 .

Theorem (Gouzé, 1998)

Suppose the semicircuits of length p, for $2 \le p \le n$, are non-negative. Then the dynamical system is similar to a cooperative system, and so there is no attracting periodic trajectory.

- Snoussi, E. H. (1998). Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6(01), 3-9.
- Gouzé, J.L. (1998). Positive and negative circuits in dynamical systems. J. Biol. Syst. 6(01), 11-15.

Throughout, let (f_1, \ldots, f_n) be a Boolean model with:

- wiring diagram $\mathcal{G}(f)$,
- FDS map $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$
- **a** asynchronous automaton $\mathcal{A}(f)$.

The discrete j^{th} partial derivative at $x \in \mathbb{F}_2^n$ is

$$f_{ij}(x) = \frac{\partial f_i(x)}{\partial x_j} = f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.$$

For $x \in \mathbb{F}_2^n$, the (signed) local wiring diagram Gf(x) is the graph on $\{1, \ldots, n\}$ with:

• A positive edge
$$x_j \longrightarrow x_i$$
 if $\frac{\partial f_i(x)}{\partial x_i} = 1$.

• A negative edge
$$x_j \longrightarrow x_i$$
 if $\frac{\partial f_i(x)}{\partial x_i} = -1$.

The (global) wiring diagram $\mathcal{G}(f)$ is the union of the local wiring diagrams for all $x \in \mathbb{F}_2^n$.

Let's compute the local wiring diagram at x = 011 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_2 \land \overline{x_3}) \lor (x_1 \land \overline{x_2} \land \overline{x_3}) \lor (x_1 \land x_2 \land x_3)).$$

Recall that

$$f_{ij}(x) = f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) - f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) \in \{-1, 0, 1\}.$$

In retrospect, note that $f_3 = (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})$.

$x_1 x_2 x_3$	111	110	101	100	011	010	001	000
$f_3(x)$	1	1	0	1	0	1	0	0

Consider the following Boolean model:

 $(f_1, f_2, f_3) = \begin{pmatrix} x_1 \land x_2 \land x_3, & x_1 \lor \overline{x_3}, & (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3}) \end{pmatrix}$

Thomas' rules on biological feedback in Boolean models

Contrapositives of Thomas' rules give relationships between feedback loops and fixed points.

Theorem 1: multistationarity \Rightarrow positive feedback (Richard/Comet, 2007)

If $\mathcal{G}(f)$ has no positive cycle, then f has at most one fixed point.

Theorem 2: sustained oscillations \Rightarrow negative feedback (Richard, 2010)

If $\mathcal{G}(f)$ has no negative cycle, then f has at least one fixed point.

Corollary

If $\mathcal{G}(f)$ is acyclic, then f has a unique fixed point.

In fact, if $\mathcal{G}(f)$ is acyclic, then we can say a lot more about f.

- Richard, A., & Comet, J.P. (2007). Necessary conditions for multistationarity in discrete dynamical systems. *Discrete Appl. Math.* 155(18), 2403-2413.
- Richard, A. (2010). Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math. 44(4), 378-392.

Acyclic wiring diagrams & nilpotent dynamics

In a geodesic path in the asynchronous automaton, every bit changes at most once.

Theorem (Robert, 1980)

If the wiring diagram $\mathcal{G}(f)$ is acyclic, then

- 1. f has a unique fixed point, x.
- 2. $f^n(y) = x$ for all $y \in \mathbb{F}_2^n$.
- 3. $\mathcal{A}(f)$ is acyclic and has a geodesic path from every state to x.

Boolean models for which $f^k = \text{constant}$, for some k, are said to be nilpotent.

- Robert, F. (1980). Iterations sur des ensembles finis et automates cellulaires contractants. Linear Algebra Appl. 29, 393-412.
- Robert, F. (1986). Discrete Iterations. Springer Series in Computational Mathematics.
- Robert, F. (1995). Discrete dynamical systems (Vol. 19). Springer Science & Business Media.
- Richard, A. (2019). Nilpotent dynamics on signed interaction graphs and weak converses of Thomas' rules. *Discrete Appl. Math.* 267, 160-175.

The Jacobian conjecture from algebraic geometry

For polynomials $f_1, \ldots, f_n \in \mathbb{F}[x_1, \ldots, x_n]$, define the polynomial map

 $f: \mathbb{F}^n \longrightarrow \mathbb{F}^n, \qquad f: (x_1, \ldots, x_n) \longmapsto (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)).$

The Jacobian is the matrix

$$I = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix},$$

and $J_f := \det J$ is its Jacobian determinant.

The following is #16 on Steve Smale's 1998 list of unsolved problems for the 21st century.

Jacobian conjecture (Keller, 1939)

Let char(\mathbb{F}) = 0 and n > 1. If J_f is a non-zero constant, then f has an inverse function

$$g: \mathbb{F}^n \longrightarrow \mathbb{F}^n, \qquad g: (x_1, \ldots, x_n) \longmapsto (g_1(x_1, \ldots, x_n), \ldots, g_n(x_1, \ldots, x_n))$$

The Jacobian conjecture from algebraic geometry

Jacobian conjecture, equivalent statement (Cima, Gasull, Mañosas, 1999) If $f: \mathbb{F}^n \to \mathbb{F}^n$ is a polynomial map such that for each $x \in \mathbb{F}^n$, the spectral radius $\rho(J_f(x)) < 1$, then f has a unique fixed point.

This suggests the following Boolean analogue, first stated by Shih & Ho (1999).

Boolean analogue (Shih & Dong, 2005)

If $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$, and every eigenvalue of J_f is zero, then f has a unique point.

In 2008, Richard extended this to the discrete (non-Boolean) case.

- Shih, M. H., & Ho, J. L. (1999). Solution of the Boolean Markus–Yamabe problem. Adv. Appl. Math. 22(1), 60-102.
- Cima, A., Gasull, A., & Mañosas, F. (1999). The discrete Markus-Yamabe problem. Nonlinear Anal. Theory Methods Appl. 35(3), 343-354.
- Shih, M. H., & Dong, J. L. (2005). A combinatorial analogue of the Jacobian problem in automata networks. *Adv. Appl. Math.* **34**(1), 30-46.
- Richard, A. (2008). An extension of a combinatorial fixed point theorem of Shih and Dong. Adv. Appl. Math. **41**(4), 620-627.

Generalizations of Robert's theorem

Robert proved that if the global wiring diagram $\mathcal{G}(f)$ is acyclic, f has a unique fixed point.

This stronger result is equivalent to the Boolean analogue of the Jacobian conjecture.

Theorem (Shih & Dong, 2005)

If the local wiring diagram Gf(x) is acyclic for all $x \in \mathbb{F}_2^n$, then f has a unique fixed point.

Here is a different generalization of Robert's theorem.

Theorem (Richard, 2015)

Suppose that for every $1 \le \ell \le n$, there are fewer than 2^{ℓ} states $x \in \mathbb{F}_2^n$ such that Gf(x) has a cycle of length $\le \ell$. Then f has a unique fixed point.

Richard, A. (2015). Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks. *Theor. Comput. Sci.* 583, 1-26.

Thomas' Rules for a simple positive cycle

Since Thomas' Rule 1 is about positive feedback, let's first consider the most basic example.

Remark

If the wiring diagram $\mathcal{G}(f)$ is a simple chordless cycle, then the asynchronous automaton has two attractors, which are both fixed points.

- **Rule 1**: multiple fixed points \Rightarrow positive cycle. \checkmark
- **Rule 2**: no negative cycle \Rightarrow at least one fixed point. \checkmark

Thomas' Rules for a simple negative cycle

Since Thomas' Rule 2 is about negative feedback, let's first consider the most basic example.

Remark

If the wiring diagram $\mathcal{G}(f)$ is a simple chordless cycle, then the asynchronous automaton has one attractor: a 2n-length cycle.

- **Rule 1**: no positive cycle \Rightarrow at most one fixed point. \checkmark
- **Rule 2**: sustained oscillation in $\mathcal{A}(f) \Rightarrow$ negative cycle. \checkmark

Strengthening Thomas' Rules

Thomas' rules for Boolean models can be strengthened under two extra conditions:

- The wiring diagram $\mathcal{G}(f)$ is strongly connected with a least one arc.
- The functions are unate.

Theorem 1: multistationarity \Rightarrow positive feedback (Aracena, 2008)

If $\mathcal{G}(f)$ has no positive cycle, then f has at most one no fixed point.

Theorem 2: sustained oscillations \Rightarrow negative feedback (Aracena, 2008)

If $\mathcal{G}(f)$ has no negative cycle, then f has at least one two fixed points.

Aracena, J. (2008). Maximum number of fixed points in regulatory Boolean networks. *Bull. Math. Biol.* **70**, 1398-1409.

Thomas' first rule

Theorem (Aracena, Demongeot, Goles, 2004)

Suppose (f_1, \ldots, f_n) is a Boolean model and $\mathcal{G}(f)$ has no positive cycle. Then f has at most one fixed point.

Corollary

If $\mathcal{G}(f)$ is strongly connected, has at least one arc, and no positive cycle. Then f has no fixed points.

- Aracena, J., Demongeot, J., & Goles, E. (2004). Positive and negative circuits in discrete neural networks. *IEEE Trans. Neural Netw.* 15(1), 77-83.
- Aracena, J. (2008). Maximum number of fixed points in regulatory Boolean networks. *Bull. Math. Biol.* **70**, 1398-1409.

Theorem

Suppose f has two distinct fixed points, x and y. Then $\mathcal{G}(f)$ has a positive cycle C such that $x_i \neq y_i$ for every vertex i of C.

Thomas' first rule, local versions

Theorem (Remy, Ruet, Thieffry, 2008)

Suppose (f_1, \ldots, f_n) is a Boolean model and Gf(x) has no positive cycle for all $x \in \mathbb{F}_2^n$. Then f has at most one fixed point.

Thus positive cycles are not only necessary for multiple fixed points, but, more generally, for multiple asynchronous attractors.

Theorem (Richard & Comet, 2004)

Suppose (f_1, \ldots, f_n) is a logical model and Gf(x) has no positive cycle for all $x \in \mathbb{F}_2^n$. Then $\mathcal{A}(f)$ has a unique attractor, and every $x \in \mathbb{F}_2^n$ has a geodesic into it.

- Remy, É., Ruet, P., & Thieffry, D. (2008). Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. 41(3), 335-350.
- Richard, A., & Comet, J.P. (2007). Necessary conditions for multistationarity in discrete dynamical systems. Discrete Appl. Math. 155(18), 2403-2413.

Thomas' second rule

Theorem (Richard, 2010)

If $\mathcal{A}(f)$ has a cyclic attractor, then $\mathcal{G}(f)$ has a negative circuit.

This was proven by Remy, Ruet, and Thieffry in special case of $\mathcal{A}(f)$ having a simple cycle.

As a result of Richard's theorem (but not Remy/Ruet/Thieffry), we get the following.

Corollary

If $\mathcal{G}(f)$ has no negative circuit, then f has at least one fixed point.

- Remy, É., Ruet, P., & Thieffry, D. (2008). Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. 41(3), 335-350.
- Richard, A. (2010). Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math. 44(4), 378-392.

For each i = 1, ..., n, define the function

$$F_i: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n, \qquad F_i: x \longmapsto (x_1, \ldots, x_{i-1}, f_i(x), x_{i+1}, \ldots, x_n).$$

The asynchronous dynamics starting from x(0) is defined by a map $\varphi \colon \mathbb{N} \to \{1, \dots, n\}$ called a strategy, where

$$x(t+1) = F_{\varphi(t)}(x(t)), \qquad (t = 0, 1, 2, ...).$$

A strategy is pseudoperiodic if $|\phi^{-1}(i)| = \infty$, for all i = 1, ..., n.

For each $x \in \mathbb{F}_2^n$, define

$$I_f(x) = \{i \in \{1, \ldots, n\} \mid f_i(x) \neq x_i\}.$$

A trap domain is a nonempty $D \subseteq \mathbb{F}_2^n$ such that if $x \in D$, then $F_i(x) \in D$, for all *i*.

An attractor is a minimal trap domain.

A cyclic attractor is a trap domain of size at least 2.

A fixed point is a trap domain of size 1.

Recall that each edge from j to i in the local wiring diagram has sign

$$f_{ij}(x) = f_i(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) - f_i(x_1, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_n) \in \{-1, 0, 1\}.$$

Now, we'll define a different local diagram. For each $i = 1, \ldots, n$ define

$$f'_i(x) = \text{sign}(f_i(x) - x_i) \in \{0, 1, -1\}.$$

Definition

The strong wiring diagram at $x \in X$ is the graph G'f(x) on vertex set $\{1, \ldots, n\}$ that contains an arc from j to i of sign $s \in \{-1, 1\}$ if

$$f'_i(x) \neq f'_i(F_j(x)), \qquad s \in f'_j(x)f'_i(F_j(x)).$$

Lemma 1 (exercise)

Each local wiring diagram G'f(x) is a subgraph of the global wiring diagram $\mathcal{G}(f)$.

We'll prove these in the Boolean setting, but they hold for any state space $X = \{0, 1, ..., r\}$.

Let's compare both local wiring diagrams at x = 000 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f_i'(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f_i'(x) \neq f_i'\left(F_j(x)\right), \qquad s_{ij} = f_j'(x)f_i'\left(F_j(x)\right). \end{split}$$

Let's compare both local wiring diagrams at x = 001 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f_i'(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f_i'(x) \neq f_i'\left(F_j(x)\right), \qquad s_{ij} = f_j'(x)f_i'\left(F_j(x)\right). \end{split}$$

Let's compare both local wiring diagrams at x = 010 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}. \\ f'_i(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f'_i(x) \neq f'_i\left(F_j(x)\right), \qquad s_{ij} = f'_j(x)f'_i\left(F_j(x)\right). \end{split}$$

Let's compare both local wiring diagrams at x = 100 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f'_i(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f'_i(x) \neq f'_i\left(F_j(x)\right), \qquad s_{ij} = f'_j(x)f'_i\left(F_j(x)\right). \end{split}$$

i	j	$f_{ij}(x)$	$f_i'(x)$	$f_j'(x)$	$F_j(x)$	$f_i'(F_j(x))$	≠?	s ij	(1)	(2)	111
1	1	0	-1	-1	<u>000</u>	0	1	0	66(100)	$\overline{}$	
1	2	0	-1	1	1 <u>1</u> 0	$^{-1}$	×	-1	Gf (100)		
1	3	0	-1	1	10 <u>1</u>	-1	X	-1	3		
2	1	0	1	-1	<u>0</u> 00	1	×	-1	\bigcirc		
2	2	0	1	1	1 <u>1</u> 0	0	1	0	~	_	
2	3	0	1	1	10 <u>1</u>	1	X	1	(1)	(2)	
3	1	1	1	-1	<u>0</u> 00	0	1	0	G'f(100)		
3	2	0	1	1	1 <u>1</u> 0	1	×	1	3		
3	3	-1	1	1	10 <u>1</u>	-1	1	$^{-1}$	e e e e e e e e e e e e e e e e e e e		1000

Let's compare both local wiring diagrams at x = 011 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f_i'(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f_i'(x) \neq f_i'\left(F_j(x)\right), \qquad s_{ij} = f_j'(x)f_i'\left(F_j(x)\right). \end{split}$$

Let's compare both local wiring diagrams at x = 101 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f'_i(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f'_i(x) \neq f'_i\left(F_j(x)\right), \qquad s_{ij} = f'_j(x)f'_i\left(F_j(x)\right). \end{split}$$

i	j	$f_{ij}(x)$	$f_i'(x)$	$f_j'(x)$	$F_j(x)$	$f_i'(F_j(x))$	\neq ?	s ij	1	111
1	1	0	-1	-1	<u>0</u> 01	0	1	0	C((101)	
1	2	1	-1	1	1 <u>1</u> 1	0	1	0	Gf (101)	
1	3	0	-1	-1	10 <u>0</u>	-1	X	1	3	
2	1	1	1	-1	<u>0</u> 01	0	1	0	C	
2	2	0	1	1	1 <u>1</u> 1	0	1	0		
2	3	0	1	-1	10 <u>0</u>	1	×	-1	(1) (2)	
3	1	0	-1	-1	<u>0</u> 01	$^{-1}$	X	1	G'f(101)	
3	2	1	-1	1	1 <u>1</u> 1	0	1	0	0	
3	3	-1	-1	-1	10 <u>0</u>	1	1	-1	²	1900

Let's compare both local wiring diagrams at x = 110 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f_i'(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f_i'(x) \neq f_i'\left(F_j(x)\right), \qquad s_{ij} = f_j'(x)f_i'\left(F_j(x)\right). \end{split}$$

Let's compare both local wiring diagrams at x = 111 of the following Boolean model:

$$(f_1, f_2, f_3) = (x_1 \land x_2 \land x_3, \quad x_1 \lor \overline{x_3}, \quad (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3})).$$

$$\begin{split} f_{ij}(x) &= f_i(x_1, \dots, x_{j-1}, 1, x_{j+1}, \dots, x_n) - f_i(x_1, \dots, x_{j-1}, 0, x_{j+1}, \dots, x_n) \in \{-1, 0, 1\}.\\ f'_i(x) &= \text{sign}\left(f_i(x) - x_i\right) \in \{0, 1, -1\}, \qquad f'_i(x) \neq f'_i\left(F_j(x)\right), \qquad s_{ij} = f'_j(x)f'_i\left(F_j(x)\right). \end{split}$$

Consider the following Boolean model:

 $(f_1, f_2, f_3) = \begin{pmatrix} x_1 \land x_2 \land x_3, & x_1 \lor \overline{x_3}, & (x_1 \land x_2) \lor (x_1 \land \overline{x_3}) \lor (x_2 \land \overline{x_3}) \end{pmatrix}$

The graph G'f(x) has an arc from j to i of sign $s_{ij} \in \{-1, 1\}$ if

$$f_i'(x) \neq f_i'(F_j(x)), \qquad s_{ij} = f_j'(x)f_i'(F_j(x)).$$

Lemma 1

Each G'f(x) is a subgraph of the local wiring diagram Gf(x).

Proof (sketch)

Suppose that G'f(x) has an arc from j to i of sign s_{ij} .

Case 1 $(i \neq j)$: We know $f'_i(x) \neq 0$. First, suppose $f'_i(x) > 0$; the other case is similar.

Subcase 1a $(s_{ij} = 1)$. This forces $f'_i(F_j(x)) = 1 \Rightarrow f'_i(x) = 0$ and $x_i = 0$.

The graph G'f(x) has an arc from j to i of sign $s_{ij} \in \{-1, 1\}$ if

$$f_i'(x) \neq f_i'(F_j(x)), \qquad s_{ij} = f_j'(x)f_i'(F_j(x)).$$

Lemma 1

Each G'f(x) is a subgraph of the local wiring diagram Gf(x).

Proof (sketch)

Suppose that G'f(x) has an arc from j to i of sign s_{ij} .

Case 1 $(i \neq j)$: We know $f'_i(x) \neq 0$. First, suppose $f'_i(x) > 0$; the other case is similar.

Subcase 1b $(s_{ij} = -1)$. This forces $f'_i(F_j(x)) = -1 \Rightarrow f'_i(x) = 0$ and $x_i = 1$.

$$y_{i} = 0 f_{j}(x) = y_{j} = 1 y = x + e_{j} = F_{j}(x)$$

$$x_{i} = 0 x_{j} = 0 x z = F_{i}(y) f_{i}(y) = z_{i} = 0 z_{j} = 1$$

This time, we have $f_{ij}(x) = f_i(y) - f_i(x) = 0 - 1 = -1$.

The graph G'f(x) has an arc from j to i of sign $s_{ij} \in \{-1, 1\}$ if

$$f_i'(x) \neq f_i'(F_j(x)), \qquad s_{ij} = f_j'(x)f_i'(F_j(x)).$$

Lemma 1

Each G'f(x) is a subgraph of the local wiring diagram Gf(x).

Proof (sketch)

Suppose that G'f(x) has an arc from j to i of sign s_{ij} .

Case 2 (i = j): Since $s_{ii} = f'_i(x)f'_i(F_i(x))$ and $f'_i(x) \neq f'_i(F_i(x))$, we must have $s_{ii} = -1$.

Suppose $f'_i(x) = 1$; the other case is similar. This means $f'_i(F_i(x)) = -1$ and $x_i = 0$.

$$f_i(x) = y_i = 1 \qquad y = x + e_i = F_i(x)$$

$$i \qquad i \qquad i \qquad i \qquad i \qquad j \qquad j = x_i = 0 \qquad x = y + e_i = F_i(y)$$

This time, we have $f_{ii}(x) = f_i(y) - f_i(x) = 0 - 1 = -1$.

Lemma 2

Let (x^0, x^1, \ldots, x^r) be an elementary path in $\mathcal{A}(f)$ of length $r \ge 1$, and let $i \in I_f(x^r)$. If $f'_i(x^p) \ne f'_i(x^r)$ for all $0 \le p < r$, then there exists $j \in I_F(x^0)$ such that $\bigcup_{q=0}^{r=1} G'f(x^q)$ has a path from j to i of sign $f'_i(x^0)f'_i(x^r)$.

Lemma 3

Let A be a cyclic attractor of $\mathcal{A}(f)$. If $|I_f(x)| = 1$ for some $x \in A$, then $\bigcup_{x \in A} Gf(x)$ has a negative circuit.

Lemma 4

Let A be a cyclic attractor of $\mathcal{A}(f)$. If $|I_f(x)| > 1$ for all $x \in A$, then:

- (i) there exists $h: X \to X$ such that $\mathcal{A}(h)$ contains a cyclic attractor attractor $\mathcal{A}' \subsetneq \mathcal{A}$
- (ii) $G'h(x) \subseteq G'f(x)$ for all $x \in X$.

Lemma 5

If A is a cyclic attractor of $\mathcal{A}(f)$, then $\bigcup_{x \in A} G'f(x)$ has a negative circuit.

Lemma 2

Let (x^0, x^1, \ldots, x^r) be an elementary path in $\mathcal{A}(f)$ of length $r \ge 1$, and let $i \in I_f(x^r)$. If $f'_i(x^r) \neq f'_i(x^p)$ for all $0 \le p < r$, then there exists $j \in I_F(x^0)$ such that $\bigcup_{q=0}^{r=1} G'f(x^q)$ has a path from j to i of sign $f'_i(x^0)f'_i(x^r)$.

Lemma 2

Let (x^0, x^1, \ldots, x^r) be an elementary path in $\mathcal{A}(f)$ of length $r \ge 1$, and let $i \in I_f(x^r)$. If $f'_i(x^r) \ne f'_i(x^p)$ for all $0 \le p < r$, then there exists $j \in I_F(x^0)$ such that $\bigcup_{q=0}^{r=1} G'f(x^q)$ has a path from j to i of sign $f'_j(x^0)f'_i(x^r)$.

Proof (induct on r)

Case (r > 1): Let $j \in I_F(r^0)$ satisfy $F_j(x^0) = x^1$, and $k \in I_F(x^{r-1})$ satisfy $F_k(x^{r-1}) = x^r$:

There is a path from j to i with sign $s_{ji} = s_{kj}s_{ik} = f'_j(x^0)f'_i(x^r)$.

Lemma 3

Let A be a cyclic attractor of $\mathcal{A}(f)$. If $|I_f(x)| = 1$ for some $x \in A$, then $\bigcup_{x \in A} G'f(x)$ has a negative circuit.

Proof

Suppose $|I_F(x^0)| = \{i\}$ and consider an elementary cycle $(x^0, x^1, \dots, x^r = x^0)$.

Suppose $f'_i(x_0) > 1$; the other case is analogous.

Let $p \in \{1, \ldots, r-1\}$ be minimal such that $f'_i(x_p) = -1$.

Now, apply Lemma 2 with j = i to the path (x^0, \ldots, x^p) .

Lemma 4

Let A be a cyclic attractor of $\mathcal{A}(f)$. If $|I_f(x)| > 1$ for all $x \in A$, then:

(i) there exists $h\colon X \to X$ such that $\mathcal{A}(h)$ contains a cyclic attractor attractor $A' \subsetneq A$

(ii) $G'h(x) \subseteq G'f(x)$ for all $x \in X$.

Proof

Pick any $y \in A$, and WLOG, assume $1 \in I_f(y)$. The map we seek is

$$h: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^n, \qquad h: x \longmapsto (x_1, f_2(x), \dots, f_n(x)).$$

Claim 1: A is a trap domain of $\mathcal{A}(h)$.

Take any $i \in I_h(x)$. Note that $i \neq 1$, and so $H_i(x) = F_i(x) \in A$.

Let $B \subseteq A$ be an attractor of $\mathcal{A}(h)$. Note that B is not a fixed point. (Why?)

Claim 2: $B \subsetneq A$. [Because if $y \in B$, then $F_1(y) \notin B$.]

Claim 3: $G'h(x) \subseteq G'f(x)$ for all $x \in \mathbb{F}_2^n$.

Suppose arc $j \xrightarrow{s_{ij}} i$ in G'h(x) with sign $s_{ij} = h'_j(x)h'_i(H_j(x)) \neq 0$. Then $i \neq 1$ and $j \neq 1$.

Thus $H_i = F_i$ and $H_j = F_j$, so $s_{ij} = f'_j(x)f'_i(F_j(x))$. Hence $j \xrightarrow{s_{ij}} i$ is in G'f(x).

 \checkmark

Lemma 5

If A is a cyclic attractor of $\mathcal{A}(f)$, then $\bigcup_{x \in A} G'f(x)$ has a negative circuit.

Proof

Consider the following poset

 $P = \{(f, A) \mid f \colon \mathbb{F}_2^n \to \mathbb{F}_2^n, \text{ and } A \subseteq \mathbb{F}_2^n \text{ is a cyclic attractor in } \mathcal{A}(f)\},\$

where $(h, B) \leq (f, A)$ if $B \subseteq A$. We will induct over P.

Let $(f, A) \in P$ be minimal. By Lemma 4, $|I_f(x)| = 1$ for some $x \in A$, so apply Lemma 3.

If $(f, A) \in P$ is not minimal, find $(h, B) \prec (f, A)$, and the result follows from induction.

Corollary (Theorem 2)

If $\mathcal{A}(f)$ has a cyclic attractor, then $\mathcal{G}(f)$ has a negative circuit.

Proof

By Lemma 1, $\bigcup_{x \in A} G'f(x)$ is a subgraph of $\mathcal{G} = \bigcup_{x \in A} Gf(x)$.