Topics: Eulerian and Mahonian statistics

1. In class, we computed the descent, excedance, weak excedance, fixed points, inversion, and major index, for the 6 permutations in \mathfrak{S}_3 . They are summarized by the following table and polynnomials..

w	\widehat{w}	$exc(\pi)$	$wexc(\pi)$	$fix(\pi)$	$des(\pi)$	$inv(\pi)$	$\mathrm{maj}(\pi)$
(1)(2)(3)	123	0	3	3	0	0	0
(1)(32)	$1\underline{3}2$	1	2	1	1	1	2
(21)(3)	<u>2</u> 13	1	2	1	1	1	1
(3 <u>12</u>)	$2\underline{3}1$	2	2	0	1	2	2
(32 <u>1</u>)	<u>3</u> 12	1	1	0	1	2	1
(31)(2)	<u>32</u> 1	1	2	1	2	3	3

$$\sum_{w \in \mathfrak{S}_3} x^{\text{exc}(w)} = \sum_{w \in \mathfrak{S}_3} x^{\text{des}(w)} = 1 + 4x + 4x^2, \qquad \sum_{w \in \mathfrak{S}_3} x^{\text{inv}(w)} = \sum_{w \in \mathfrak{S}_3} x^{\text{maj}(w)} = 1 + 2x + 2x^2 + x^3.$$

Create a similar table for the 24 permuations in \mathfrak{S}_4 , and write the corresponding polynomials. You may use ChatGPT to help as long as you summarize your steps and usage.

- 2. In class, we saw the 1978 bijection $\varphi \colon \mathfrak{S}_n \to \mathfrak{S}_n$ of Foata and Schützenberger for which $\operatorname{maj}(\pi) = \varphi(\operatorname{inv}(\pi))$. This is defined by starting with a word $w = w_1 \cdots w_n$, and recursively defining the words $\gamma_1, \ldots, \gamma_n$, where each γ_i has length i, according to the following rules:
 - (a) Set $\gamma_1 = w_1$.
 - (b) Given γ_i :
 - i. Split it into subwords:
 - A. If $w_i > w_{i+1}$ split after each number $> w_{i+1}$
 - B. If $w_i > w_{i+1}$ split after each number $< w_i$.
 - ii. Cyclically shift each resulting compartment 1 to the right
 - iii. Add w_{i+1} at the end to get γ_{i+1}
 - (c) The image of w is γ_n .

In class, we did an example to demonstrate that $\varphi(683941725) = 364891725$, and we arranged each step in a row in a table, like the following:

unsplit	$\operatorname{inv}(\gamma_i)$	w_i vs. w_{i+1}	split	cyclically shift
$\gamma_1 = 6$	0	6 < 8	6	6
$\gamma_2 = 68$	0	8 > 3	6 8	6 8
:	÷	:	<u>:</u>	:
$\gamma_8 = 63894712$	18	2 < 5	63 894 71 2	36 489 17 2
$\gamma_9 = 364891725$	18	_	_	_

Carry out a similar exercise for the permutation w = 469528137.

3. Recall the fundamental bijection $w \mapsto \widehat{w}$ of Foata that removes the parantheses from a permutation in standard cycle notation. In class, we considered the following permutation under the inverse map:

$$\widehat{w} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 6 & 3 & 5 & 7 & 8 & 4 \end{bmatrix} \longmapsto (2\underline{1})(6\underline{35})(7)(8\underline{4}) = w,$$

where the (strict) excedences in \widehat{w} are underlined, and the weak excedences in w are in red. Recall that these are defined as

$$Wexc(w) = \{i \in [n] : w(i) \ge i\}, \qquad Exc(w) = \{i \in [n] : w(i) > i\},\$$

and note that 1 will always be a weak excedence. Show how to construct a bijection

$$\operatorname{Wexc}(\widehat{w}) \setminus \{1\} \longmapsto \operatorname{Exc}(w).$$

You are encouraged to use ChatGPT, but you must document your usage, and note that it seems to be *very* prone to making errors on this particular problem!