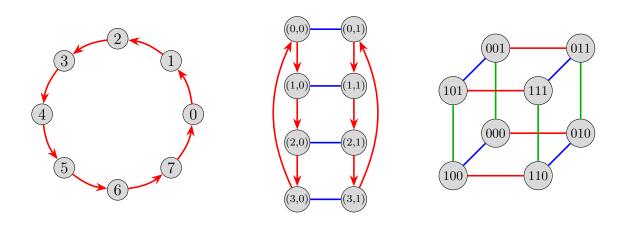
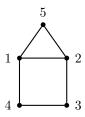

Topics: Chip firing


1. Let $G = K_4 \setminus \{1,3\}$. The eight critical chip configurations are shown below, along with the result of Dhar's burning test, and the corresponding spanning tree.


Recall that the critical configurations form a group called the *critical group*, denoted $\mathcal{K}(G)$, where the operation is defined as

$$[c_1] + [c_2] = [c_1 + c_2].$$

- (a) The reduced Laplacian is $L_0(G) = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, and its determinant is $d_3 = 8$. Compute the greatest common divisor of all 2×2 minors; call this d_2 . Then compute d_1 , the GCD of all 1×1 minors. The sequence $d_1 \mid d_2 \mid d_3$ are the elementary divisors of the so-called Smith normal form, and they determine the critical group.
- (b) What is the identity element of $\mathcal{K}(G)$? That is, what chip configuration \mathbf{c}_0 satisfies $[\mathbf{c}_0] + [\mathbf{c}] = [\mathbf{c}]$ for every $[\mathbf{c}] \in \mathcal{K}(G)$?
- (c) Which (non-identity) chip configurations are their own inverses? That is, which satisfy [c] + [c] = [c]? Use this to determine whether $\mathcal{K}(G)$ is isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (d) Construct an 8×8 Cayley table for $\mathcal{K}(G)$.
- (e) Construct a Cayley graph of $\mathcal{K}(G)$, and put the chip configurations in the corresponding nodes. It will have the form of one of the following

2. Consider the "house graph" G shown below:

- (a) Find the Laplacian L(G) and compute $\det(L_0(G))$.
- (b) Construct all critical chip configurations. Which is the identity element of $\mathcal{K}(G)$?
- (c) Run Dhar's burning test on the critical configurations and associate each with a spanning tree.
- (d) Construct all superstable chip configurations.
- (e) Construct a Cayley graph with the nodes labeled by the corresponding chip configurations.