1. Solve for t, and simplify whenever possible.

 (a) $3e^{-4t} = 5$
 (b) $2 = e^3 \cdot e^{2t}$
 (c) $t^2 = e^6$
 (d) $(\frac{4}{3})^{-t} = 7$
 (e) $e^{\frac{1}{3}\ln t} = 27$
 (f) $e^{-\frac{1}{3}\ln t} = 27$

2. Compute the following integrals:

 (a) $\int \frac{1}{2t} \, dt$
 (b) $\int \frac{1}{3 - 4t} \, dt$

3. Find the general solution of the following differential equations.

 (a) $y' = ty$
 (b) $ty' = -2y$
 (c) $y' = e^t - y$

4. Suppose that $1200 is invested at a rate of 5%, compounded continuously.

 (a) Assuming no additional withdrawals or deposits, how much will be in the account after 10 years?
 (b) How long will it take the balance to reach 5000?

5. Tritium is an isotope of hydrogen that is sometimes used as a biochemical tracer. Suppose that 100 mg of tritium decays to 80 mg in 4 hours. Determine its half-life.

6. Suppose a cold beer at 40°F is placed into a warm room at 70°F. Suppose 10 minutes later, the temperature of the beer if 48°F. Use Newton’s law of cooling to find the temperature 25 minutes after the beer was placed into the room.

7. A murder victim is discovered at midnight at the temperature of the body is recorded at 31°C. One hour later, the temperature of the body is 29°C. Assume that the surrounding air temperature remains constant at 21°C. Use Newton’s law of cooling (the differential equation $T' = k(A - T)$) to calculate the victim’s time of death (when his body temperature was 37°C).

8. A parachutist of mass 60 kg free-falls from an airplane at an altitude of 5000 meters. He is subjected to an air resistance force proportional to his speed. Assume that the constant of proportionality is $r = 10$ kg/sec.
(a) Find and solve the differential equation governing the velocity of the parachuter at
time t seconds after the start of his free-fall.

(b) Assuming he does not deploy his parachute, find his limiting velocity and how much
time will elapse before he hits the ground (you may need to use a computer for this
last part, a visual approximation from the appropriate graph is fine).

9. In our model of air resistance, the resistance force has depended only on the velocity.
However, for an object that drops a considerable distance, such as the parachutist in
the previous exercise, there is a dependence on the altitude as well. It is reasonable to
assume that the resistance force is proportional to air pressure, as well as to the velocity.
Furthermore, to a first-order approximation, the air pressure varies exponentially with
the altitude (i.e., it is proportional to e^{-ax}, where a is a constant and x is the altitude).
Propose and justify (but do not solve!) a differential equation model for the velocity of a
falling object subject to such a resistance force.