Recall that Parseval’s identity says that

\[\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 \, dx = \frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2). \]

We will use this to compute \(\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots. \)

1. Let \(f(x) = x \) on \([-\pi, \pi] \) and extend \(f(x) \) to be \(2\pi \)-periodic. Write \(f(x) \) as a Fourier series. (See Example 2 on pages 5-6 of the lecture notes.)

2. Compute \(\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 \, dx. \) (The left-hand side of Parseval’s identity.)

3. Compute \(\frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2). \) (The right-hand side of Parseval’s identity.)

4. Equate your answers to the previous two parts and solve for \(\sum_{n=1}^{\infty} \frac{1}{n^2}. \)