- 1. Two balls are chosen randomly from an urn containin 8 white, 4 black, and 2 orange balls. Suppose that we win \$2 for each black ball selected and we lose \$1 for each white ball selected. Let X denote our winnings. What are the possible values of X, and what are the probabilities associated with each value?
- 2. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. What are the possible values of X?
- 3. A salesman has scheduled two appointments to sell encyclopedias. His first appointment will lead to a sale with probability 0.3, and his second will lead independently to a sale with probability 0.6. Any sale made is equally likely to be either for the deluxe model, which costs \$1000, or the standard model, which costs \$500. Determine the probability mass function of X, the total dollar value of all sales.
- 4. Suppose that the distribution function of X is given by

$$F(b) = \begin{cases} 0 & b < 0\\ \frac{b}{4} & 0 \le b < 1\\ \frac{1}{2} + \frac{b-1}{4} & 1 \le b < 2\\ \frac{11}{12} & 2 \le b < 3\\ 1 & 3 \le b \end{cases}$$

- (a) Find $P\{X = i\}$, for i = 1, 2, 3.
- (b) Find $P\{\frac{1}{2} < X < \frac{3}{2}\}.$
- 5. A gambling book recommends the following "winning strategy" for the game of roulette: Bet \$1 on red. If red appears (which has probability $\frac{18}{38}$), then take the \$1 profit and quit. If red does not appear and you lose this bet (which has probability $\frac{20}{38}$ of occurring), make additional \$1 bets on red on each of the next two spins of the roulette wheel and then quit. Let X denote your winnings when you quit.
 - (a) Find $P\{X > 0\}$.
 - (b) Are you convinced that the strategry is indeed a "winning" strategy? Explain your answer!
 - (c) Find E[X].
- 6. You have \$1000, and a certain commodity presently sells for \$2 per ounce. Suppose that after one week the commodity will sell for either \$1 or \$4 an ounce, with these two possibilities being equally likely.
 - (a) If your objective is to maximize the expected amount of money that you possess at the end of the week, what strategy should you employ?
 - (b) If your objective is to maximize the expected amount of the commodity that you possess at the end of the week, what strategy should you employ?

- 7. A newsboy purchases papers at 10 cents and sells them at 15 cents. However, he is not allowed to return unsold papers. If his daily demand is a binomial random variable with $n = 10, p = \frac{1}{3}$, approximately how many papers should he purchase so as to maximize his expected profit?
- 8. If E[X] = 1 and Var(X) = 5, find
 - (a) $E[(2+X)^2];$
 - (b) Var(4+3X).
- 9. On a multiple-choice exam with 3 possible answers for each of the 5 questions, what is the probability that a student will get 4 or more correct answers just by guessing?
- 10. Suppose that a biased coin that lands on heads with probability p is flipped 10 times. Given that a total of 6 heads results, find the conditional probability that the first 3 outcomes are
 - (a) H, T, T;
 - (b) H, T, H.