1. Prove the conditional convergence of each of the following series:

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$

- 2. Suppose $\lim_{n\to\infty} na_n = A \neq 0$. Prove that $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. Determine the convergence/divergence of the following series:

(a)
$$1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} + \cdots$$

(b)
$$1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \cdots$$

4. If $\sum_{n=1}^{\infty} a_n$ converges conditionally, prove there exist rearrangements a'_n and \tilde{a}_n such that

$$\sum_{n=1}^{\infty} a'_n = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \widetilde{a}_n = -\infty.$$

5. Prove the following:

(a)
$$\sum_{n=1}^{\infty} |a_n|^2 < \infty$$
 and $\sum_{n=1}^{\infty} |b_n|^2 < \infty$ \implies $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.

(b)
$$\sum_{n=1}^{\infty} |a_n| < \infty$$
 and $\sum_{n=1}^{\infty} b_n < \infty$ \implies $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.

- 6. Prove that $\ell^1 \subsetneq \ell^2 \subsetneq \ell^{\infty}$.
- 7. Prove that the following are normed linear spaces:

(a)
$$(\ell^p, ||\cdot||_p)$$
 for $p = 1, 2, \infty$.

(b)
$$(\mathcal{B}[0,1], ||\cdot||_{\infty}), \quad (\mathcal{R}[0,1], ||\cdot||_{\infty}), \quad (\mathcal{C}[0,1], ||\cdot||_{\infty}).$$

8. Find the pointwise limit of each of the following sequences of functions:

(a)
$$f_n(x) = \frac{\sin nx}{1 + nx}$$
 on $[0, \infty)$

(b)
$$f_n(x) = nxe^{-nx^2}$$
 on \mathbb{R} .

- 9. Let $f_n : \mathbb{N} \to \mathbb{R}$ defined by $f_n(m) = \frac{n}{m+n}$. Show that $\lim_{m \to \infty} \lim_{n \to \infty} f_n(m) \neq \lim_{n \to \infty} \lim_{m \to \infty} f_n(m)$.
- 10. For $n \ge 2$, define $f_n(x) = \begin{cases} n^2 x & \text{on } [0, \frac{1}{n}], \\ 2n n^2 x & \text{on } (\frac{1}{n}, \frac{2}{n}], \\ 0 & \text{on } (\frac{2}{n}, 1], \end{cases}$ Sketch $f_n(x)$ and show that

$$\lim_{n\to\infty} \int_0^1 f_n(x) \, dx \neq \int_0^1 \lim_{n\to\infty} f_n(x) \, dx \, .$$