- 1. Find the Laplace transform of the following functions by using a table of Laplace transforms
 - (a) f(t) = -2
 - (b) $f(t) = e^{-2t}$
 - (c) $f(t) = \sin 3t$
 - (d) $f(t) = te^{-3t}$
 - (e) $f(t) = e^{2t} \cos 2t$
- 2. Transform the given initial value problem into an algebraic equation involving $Y(s) := \mathcal{L}(y)$, and solve for Y(s).
 - (a) $y'' + y = \sin 4t$, y(0) = 0, y'(0) = 1
 - (b) $y'' + y' + 2y = \cos 2t + \sin 3t$, y(0) = -1, y'(0) = 1
 - (c) $y' + y = e^{-t} \sin 3t$, y(0) = 0
- 3. Find the inverse Laplace transform of the following functions.
 - (a) $Y(s) = \frac{2}{3 5s}$
 - (b) $Y(s) = \frac{1}{s^2 + 4}$
 - (c) $Y(s) = \frac{5s}{s^2 + 9}$
 - $(d) Y(s) = \frac{3}{s^2}$
 - (e) $Y(s) = \frac{3s+2}{s^2+25}$
 - (f) $Y(s) = \frac{2-5s}{s^2+9}$
 - (g) $Y(s) = \frac{s}{(s+2)^2 + 4}$
 - (h) $Y(s) = \frac{3s+2}{s^2+4s+29}$
 - (i) $Y(s) = \frac{2s-2}{(s-4)(s+2)}$
 - (j) $Y(s) = \frac{3s^2 + s + 1}{(s 2)(s^2 + 1)}$
- 4. Use the Laplace transform to solve the following initial value problems.
 - (a) $y' 4y = e^{-2t}t^2$, y(0) = 1
 - (b) $y'' 9y = -2e^t$, y(0) = 0, y'(0) = 1

- 5. Find the Laplace transform of the given functions.
 - (a) 3H(t-2)
 - (b) (t-2)H(t-2)
 - (c) $e^{2(t-1)}H(t-1)$
 - (d) $H(t \pi/4) \sin 3(t \pi/4)$
 - (e) $t^2H(t-1)$
 - (f) $e^{-t}H(t-2)$
- 6. In this exercise, you will examine the effect of shifts in the time domain on the Laplace transform (graphically).
 - (a) Sketch the graph of $f(t) = \sin t$ in the time domain. Find the Laplace transform $F(s) = \mathcal{L}\{f(t)\}(s)$. Sketch the graph of F in the s-domain on the interval [0, 2].
 - (b) Sketch the graph of $g(t) = H(t-1)\sin(t-1)$ in the time domain. Find the Laplace transform $G(s) = \mathcal{L}\{g(t)\}(s)$. Sketch the graph of G in the s-domain on the interval [0,2] on the same axes used to sketch the graph of F.
 - (c) Repeat the directions in part (b) for $g(t) = H(t-2)\sin(t-2)$. Explain why engineers like to say that "a shift in the time domain leads to an attenuation (scaling) in the s-domain."
- 7. Use the Heaviside function to concisely write each piecewise function.

(a)
$$f(t) = \begin{cases} 5 & 2 \le t < 4; \\ 0 & \text{otherwise} \end{cases}$$

(b)
$$f(t) = \begin{cases} 0 & t < 0; \\ t & 0 \le t < 3 \\ 4 & t \ge 3 \end{cases}$$

(c)
$$f(t) = \begin{cases} 0 & t < 0; \\ t^2 & 0 \le t < 2 \\ 4 & t \ge 2 \end{cases}$$

8. Find the inverse Laplace transform of each function. Create a piecewise definition for your solution that doesn't use the Heavyside function.

(a)
$$F(s) = \frac{e^{-2s}}{s+3}$$

(b)
$$F(s) = \frac{1 - e^{-s}}{s^2}$$

(c)
$$F(s) = \frac{e^{-s}}{s^2 + 4}$$

9. For each initial value problem, sketch the forcing term, and then solve for y(t). Write your solution as a piecewise function (i.e., not using the Heavysie function). Recall that the function $H_{ab}(t) = H(t-a) - H(t-b)$ is the interval function.

(a)
$$y'' + 4y = H_{01}(t)$$
, $y(0) = 0$, $y'(0) = 0$

(b)
$$y'' + 4y = t H_{01}(t)$$
, $y(0) = 0$, $y'(0) = 0$

10. Define the function

$$\delta_p^{\epsilon}(t) = \frac{1}{\epsilon} \left(H_p(t) - H_{p+\epsilon}(t) \right) .$$

(a) Show that the Laplace transform of $\delta_n^{\epsilon}(t)$ is given by

$$\mathcal{L}\left\{\delta_p^{\epsilon}(t)\right\} = e^{-sp} \frac{1 - e^{-s\epsilon}}{s\epsilon} \,.$$

- (b) Use l'Hôpital's rule to take the limit of the result in part (a) as $\epsilon \to 0$. How does this result agree with the fact that $\mathcal{L}\{\delta_p(t)\}=e^{-sp}$?
- 11. Use a Laplace transform to solve the following initial value problem:

$$y' = \delta_p(t), \qquad y(0) = 0$$

How does your answer support what engineers like to say, that the "derivative of a unit step is a unit impulse"?

12. Define the function

$$H_p^{\epsilon}(t) = \begin{cases} 0, & 0 \le t$$

- (a) Sketch the graph of $H_p^{\epsilon}(t)$.
- (b) Without being too precise about things, we could argue that $H_p^{\epsilon}(t) \to H_p(t)$ as $\epsilon \to 0$, where $H_p(t) = H(t-p)$. Sketch the graph of the derivative of $H_p^{\epsilon}(t)$.
- (c) Compare your result in (b) with the graph of $\delta_p^{\epsilon}(t)$. Argue that $H_p'(t) = \delta_p(t)$.
- 13. Solve the following initial value problems.

(a)
$$y'' + 4y = \delta(t)$$
, $y(0) = 0$, $y'(0) = 0$

(b)
$$y'' - 4y' - 5y = \delta(t)$$
, $y(0) = 0$, $y'(0) = 0$