1. The function

$$f(x) = \begin{cases} 0 & -\pi \le x < -\pi/2, \\ 1 & -\pi/2 \le x < \pi/2, \\ 0 & \pi/2 \le x \le \pi, \end{cases}$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function, and compute its Fourier series.

2. The function

$$f(t) = |x|, \qquad \text{for } x \in [-\pi, \pi]$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function, and compute its Fourier series.

3. The function

$$f(x) = \begin{cases} 0 & -\pi \le x < 0\\ x & 0 \le x \le \pi, \end{cases}$$

can be extended to be periodic of period 2π . Sketch the graph of the resulting function, and compute its Fourier series.

4. Consider the 2π -periodic function defined by

$$f(x) = \begin{cases} x^2 & -\pi \le x < \pi, \\ f(x - 2k\pi), & -\pi + 2k\pi \le x < \pi + 2k\pi \end{cases}$$

Sketch this function (at least for k = -2, -1, 0, 1, 2) and compute its Fourier series.

- 5. Find the Fourier series of the following functions without computing any integrals.
 - (a) $f(x) = 2 3\sin 4x + 5\cos 6x$,
 - (b) $f(x) = \sin^2 x$ [*Hint*: Use a standard trig identity.]
- 6. Determine which of the following functions are even, which are odd, and which are neither even nor odd:
 - (a) $f(x) = x^3 + 3x$.
 - (b) $f(x) = x^2 + |x|$.
 - (c) $f(x) = e^x$.
 - (d) $f(x) = \frac{1}{2}(e^x + e^{-x}).$
 - (e) $f(x) = \frac{1}{2}(e^x e^{-x}).$
- 7. Suppose that f is a function defined on \mathbb{R} (not necessarily periodic). Show that there is an odd function f_{odd} and an even function f_{even} such that $f(x) = f_{\text{odd}} + f_{\text{even}}$. [*Hint*: As a guiding example, suppose $f(x) = e^{ix}$, and consider $\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$ and $i \sin x = \frac{1}{2}(e^{ix} - e^{-ix})$.]

- 8. Express the *y*-intercept of $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$ in terms of the a_n 's and b_n 's. (*Hint*: It's not a_0 or $a_0/2!$)
- 9. Consider the 2π -periodic function $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$. Write the Fourier series for the following functions:
 - (a) The reflection of f(x) across the y-axis;
 - (b) The reflection of f(x) across the x-axis;
 - (c) The reflection of f(x) across the origin.
- 10. (a) The Fourier series of an odd function consists only of sine-terms. What additional symmetry conditions on f will imply that the sine coefficients with even indices will be zero (i.e., each $b_{2n} = 0$)? Give an example of a non-zero function satisfying this additional condition.
 - (b) What symmetry conditions on f will imply that the sine coefficients with odd indices will be zero (i.e., each $b_{2n+1} = 0$)? Give an example of a non-zero function satisfying this additional condition.
 - (c) Sketch the graph of a non-zero even function, such that $a_{2n} = 0$ for all n.
 - (d) Sketch the graph of a non-zero even function, such that $a_{2n+1} = 0$ for all n.
- 11. Consider the function defined on the interval $[0, \pi]$:

$$f(x) = \begin{cases} x & \text{for } 0 \le x < \pi/2, \\ \pi - x, & \text{for } \pi/2 \le x \le \pi. \end{cases}$$

- (a) Sketch the even extension of this function and find its Fourier cosine series.
- (b) Sketch the odd extension of this function and find its Fourier sine series.
- 12. Consider the function defined on the interval $[0, \pi]$:

$$f(x) = x(\pi - x).$$

- (a) Sketch the even extension of this function and find its Fourier cosine series.
- (b) Sketch the odd extension of this function and find its Fourier sine series.