Consider the ODE \(y' = 2y + t \).

(a) Draw the \(ty \)-plane (i.e., \(t \) on the \(x \)-axis, and \(y(t) \) on the \(x \)-axis). Draw a dot at each integer lattice point at each \((t, y)\), where \(t, y = -1, 0, 1 \).

(b) At each of these nine points, compute \(y'(t) \). On the \(ty \)-plane, draw a “hash mark” at \((t, y)\) with slope \(y'(t) \).
(c) Now, we will use a better method to sketch the slope field. Determine the set of points for which \(y' = 0 \) (it will be a line – set \(y' = 0 \) and solve for \(y \)).

(d) Repeat the previous step except for \(y' = c \), for various values of \(c \): 1, 2, 3, \(-1\), \(-\frac{1}{2}\).

(e) Sketch the lines you found above on the \(ty \)-plane. Along each line, sketch the hash-marks of the corresponding slope, \(y' = c \).

(f) In the slope field above, sketch the three particular solution curves that satisfy \(y(0) = 1 \), \(y(0) = -\frac{3}{4} \), and \(y(1) = -\frac{3}{4} \), respectively.