MthSc 208: Differential Equations (Summer II, 2012) In-class Worksheet 3c: Harmonic motion

In-class Worksheet 3c: Harmonic motion	
NAME:	
When a 2 kg mass is hung from a spring, the spring is displaced by 0.5 m. Now, suppose that the mass is displaced an additional 0.12 m downward from this equilibrium, and then released. We will set up and solve an initial value problem that models this.	
(a) Sketch this mass-spring system, before and after the mass is place on the spring. (Let $x = 0$ be the height of the spring without the mass).	
(b) At equilibrium, the spring force kx_0 equals the gravitational force, mg , in magnitude. Use this to solve for the spring constant k .	
(c) Newton's 2^{nd} law tells us that $F = mx''$, which is equal to the sum of the forces (gravitationa and spring). Write down a second-order differential equation that models this. Include both initial	

conditions, x(0) and x'(0).

(d) Find the general solution to this ODE. Is there a steady-state solution? If so, describe it.

(e) Solve the initial value problem. (Hint: Use the "simplest" initial condition first).