Read: Rudin, Chapter 2, pages 36–40.

1. Let A_1, A_2, A_3, \ldots be subsets of a metric space.
 (a) If $B_n = \bigcup_{i=1}^{n} A_i$, prove that $\overline{B_n} = \bigcup_{i=1}^{n} \overline{A_i}$, for $n = 1, 2, 3, \ldots$.
 (b) If $B = \bigcup_{i=1}^{\infty} A_i$, prove that $\overline{B} \supset \bigcup_{i=1}^{\infty} \overline{A_i}$.

2. Is every point of every open set $E \subset \mathbb{R}^2$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^2.

3. Let E° denote the set of all interior points of a set E, which we call the interior of E.
 (a) Prove that E° is always open.
 (b) Prove that E is open if and only if $E^\circ = E$.
 (c) If $G \subset E$ and G is open, prove that $G \subset E^\circ$.
 (d) Prove that the complement of E° is the closure of the complement of E.
 (e) Do E and \overline{E} always have the same interiors? Prove or disprove.
 (f) Do E and E° always have the same closures? Prove or disprove.

4. Let X be an infinite set. For $p, q \in X$, define
 \[d(p, q) = \begin{cases}
 1 & \text{if } p \neq q \\
 0 & \text{if } p = q.
 \end{cases} \]
 Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact? Prove all your claims.

5. Let $K = \{1/n : n \in \mathbb{N}\} \cup \{0\}$. Prove that K is compact.