Read: Rudin, Chapter 3, pages 47–65.

1. For this problem, consider the metric space \(X = \mathbb{C} \).
 (a) Show that \(|z - w| \leq |z - w| \) for all \(z, w \in \mathbb{C} \). \([\text{Hint: By the triangle inequality,} \]
 \(|z| = |z - w + w| \leq |z - w| + |w| \).\]
 (b) Prove that convergence of \(\{z_n\} \) implies convergence of \(\{|z_n|\} \). Show by example that
 the converse need not hold.

2. Put \(p_1 = \sqrt{2} \) and recursively define a sequence \(\{p_n\} \) by
 \[p_{n+1} = \sqrt{2 + \sqrt{p_n}} \quad (n = 1, 2, 3, \ldots) \, . \]
 Prove that \(\{p_n\} \) is monotonically increasing and bounded above by 2, from which we can
deduce that it converges.

3. Consider the sequence \(\{a_n\} \) defined by
 \[a_1 = 0, \quad a_{2m} = \frac{a_{2m-1}}{2}, \quad a_{2m+1} = \frac{1}{2} + a_{2m} \, . \]
 (a) Write out the first 10 terms of this sequence. Make a conjecture for what
 \(a_{2n} \) and \(a_{2n+1} \) are for all \(n \).
 (b) Prove your conjectures by induction.
 (c) Find all subsequential limits of \(\{a_n\} \), and determine \(\limsup a_n \) and \(\liminf a_n \).

4. For any two sequences \(\{a_n\} \) and \(\{b_n\} \) of real numbers, prove that
 \[\limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n \, , \]
 provided that the sum on the right is not of the form \(\infty - \infty \). Give an explicit example
 of where equality does not hold.

5. If \(\sum a_n \) converges, and if \(\{b_n\} \) is monotonic and bounded, prove that \(\sum a_n b_n \) converges.
 \([\text{Hint: Define} \ c_n = |b_n - b|, \ \text{where} \ b_n \to b \ \text{how do you know that} \ b \ \text{exists?} \] and use
 the comparison test.] Additionally, give examples to show how this can fail if \(\text{either} \) the
 “monotonic” or “bounded” condition is dropped from the hypothesis.

6. Let \(\{p_n\} \) be a sequence of real numbers, and define its arithmetic means \(\sigma_n \) by
 \[\sigma_n = \frac{p_0 + p_1 + \cdots + p_n}{n + 1} \quad (n = 0, 1, 2, \ldots) \, . \]
 (a) If \(\lim p_n = p \), prove that \(\lim \sigma_n = p \).
 (b) Construct a sequence \(\{p_n\} \) which does not converge, although \(\lim \sigma_n = 0 \).
 (c) Can it happen that \(p_n > 0 \) for all \(n \) and that \(\limsup p_n = \infty \), although \(\lim \sigma_n = 0 \)?