Lecture 23 Discontinuous Functions.

Dirichlet Function:

\[F(x) = \begin{cases}
1 & x \in \mathbb{Q} \\
0 & x \notin \mathbb{Q}
\end{cases} \]

F is not continuous at any \(p \).

Example \(F(x) = \begin{cases}
\sqrt{2} & x = \sqrt{2} \text{ (reduced)} \\
0 & x \notin \mathbb{Q}
\end{cases} \)

Discontinuous at all rationals
Continuous at all irrationals. (Why?)

Discontinuities:

Let \(f: (a,b) \to \mathbb{R} \).

If for all \(\{x_n\} \text{ in } (x, 5) \) with \(x_n \to x \)
we have \(f(x_n) \to q \), write \(\lim_{x \to x^+} f(x) = q \) or \(\lim_{x \to x^+} f(x) = q' \).

Similarly, say \(f(x) = q' \) or \(\lim_{x \to x^-} f(x) = q' \).

If \(f \) is discontinuous but both of these limits exist but aren't equal, we say \(f \) has a simple discontinuity, or a discontinuity of the first kind.
Otherwise, we say f has a discontinuity of the 2nd kind.

Example: $f(x) = \begin{cases} 0 & x = 0 \\ \sin x & x > 0 \end{cases}$

Continuous everywhere except at 0 (discont. of the 2nd kind).

Remark: In the \textit{1/3-Dirichlet} function, all discontinuities are simple.

Example: $f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$

Continuous at 0 (use e/5 argument)

Discontinuities of the 2nd kind at all other points. (Why?)

Monotonic Functions:

Recall that f is monot. inc. if $x \leq y \Rightarrow f(x) \leq f(y)$.

and monot. decr. if $x < y \Rightarrow f(x) \geq f(y)$.

Theorem: If f is monot. inc. on (a,b), then $f(x^+)$ and $f(x^-)$ exist at every point.

[so f has no discontinuities of the 2nd kind]
Proof: We have \(\sup_{t \in (x,x)} f(t) \leq f(x) \leq \inf_{t \in (x,x)} f(t) \). Call this \(A \).

Claim: \(A = f(x^+) \).

Given \(\varepsilon > 0 \), consider \(A - \varepsilon \).

\(\exists \delta \text{ s.t. } A - \varepsilon < f(x-\delta) \leq A \),

but then any \(t \in (x-\delta, x) \) but satisfies \(f(x-\delta) \leq f(t) \leq A \).

So \(f(t) \in (A - \varepsilon, A) \), as desired.

The \(f(x^+) \) case is analogous. \(\square \)

Theorem: If \(f \) is monotone on \((a,b)\), then the set of points where \(f \) is not continuous is countable.

Proof: \(\forall x \) when \(f \) is discontinuous, pick \(r(x) \in C \) s.t.

\(f(x^-) \leq r(x) \leq f(x^+) \)

set of discontinuities

By monotonicity, \(\forall x, y \in D \), then \(f(x) \neq f(y) \).

So we have an injection \(D \rightarrow \mathbb{Q} \). \(\square \)