MthSc 453: Real Analysis (Summer I 2012) Midterm 1 May 31, 2012

NAME:	Key				
-------	-----	--	--	--	--

Instructions

- Exam time is 75 minutes.
- You may not use notes or books.
- Calculators are not allowed.
- Show your work. Partial credit will be given.

Question	Points Earned	Maximum Points
1		20
2		30
3		20
4		30
Total		100

Student to your left:

Student to your right:

Written by M. Macauley

- 1. Let F be a field endowed with an order <.
 - (a) (6 points) Define what it means for F together with < to be an ordered field. You do not need to define what a field is or what an order is.

The field operations preserve the order, i.e.,

(i) $X < y \Rightarrow x+2 < y+2$ $\forall 2$ (ii) $X < y \Rightarrow c \times c$ $\forall c > 0$

(b) (6 points) Define what it means for F to have the least upper bound property.

Every nonempty subset ACF bounded above has a least upper bound & F. (Need not be in A!)

(c) (8 points) What can you say about the fields Q, R, and C, regarding these properties? Why is R is some sense "special"?

Clearly, Q = R = C.

- · Q does not have the l.u.b. property. (It has "holes")
- · C cannot be made into an ordered field (It is "too big.")
- · IR is the only ordered field with the lub. property!

Written by M. Macauley

- 2. Let $u < \infty$ be an upper bound of a set $A \subset \mathbb{R}$.
 - (a) (4 points each) Thus far, we've seen (at least) three equivalent definitions of the *supremum* of a set, which are started below. Complete the following three sentences, each of which is a condition from which we can conclude that $u = \sup A$.
 - (i) If $v \neq u$ is an upper bound of A, then ... $\vee > \cup$

(ii) If x < u, then ... $\exists a \in A$ s.t. $x < a \le U$

(iii) For any $\epsilon > 0$, ... $\exists \alpha \in A \quad s. + \quad U - \xi < 9$

(b) (10 points) Pick two of your statements from Part (a) and prove that one implies the other. (You have six choices: (i)⇒(ii), (ii)⇒(iii), etc.)

Suppose u is an upper bound for A x+.

Take ero. Put
$$[X=U-E]$$
. By (ii), $\exists a \in A$ s.t. $U-E < a \leq U$. This is (iii)

(c) (6 points) For $k \in \mathbb{R}$, define the set $kA := \{ka : a \in A\}$. Prove that if $k \geq 0$, then $k \sup(A) = \sup(kA)$.

let d = sup A. Assume k>0 (the case of k=0 is trivial).

Claim 1: kd is an upper bound for kA. to the dead

Proof: Pick xckA, say x=ka. Since ask t k>0 => ka < kd. -

Claim 2: but is a least upper bound for bA.

Post: Use defin (a)(ii). Pick x < kx => \frac{x}{h} < \psi.

Since d = sup A, BacA s.t. X < a ≤ x => x < ka ≤ kx. / Here kx = sup kA.

(d) (2 points) Does your proof hold for k < 0? Why or why not?

No. The "boxed" part requires 4 ? O.

- 3. (5 points each) For each of the following sets, decide if it is countable or uncountable. Give a one sentence justification for each.
 - (a) The set $B_f = \{x_1, x_2, \dots, x_n : x_i \in \{0, 1\}, n \in \mathbb{N}\}$. That is, the set of binary sequences of finite length.

Countable. It's a countable union of finite sets (and clearly intime.)

(b) The set $B_i = \{x_1, x_2, x_3, \ldots : x_i \in \{0, 1\}\}$. That is, the set of binary sequences of infinite length.

Uncountable. There is a bijection B; -> 2N KN.

(c) The set $Z_f = \{x_1, x_2, \dots, x_n : x_i \in \mathbb{Z}, n \in \mathbb{N}\}$. That is, the set of *integer* sequences of *finite* length.

Countable. It's a countable union of countable sets.

(d) The set $Z_i = \{x_1, x_2, x_3, \ldots : x_i \in \mathbb{Z}\}$. That is, the set of integer sequences of infinite length.

Uncountable. It contains B; (an uncountable set) as a subset.

- 4. Let (X, d) be a metric space, and $A \subset X$.
 - (a) (4 points each) Carefully complete the following definitions:
 - (i) A point $x \in X$ is a limit point of A if ... $\forall r \in \mathbb{R}$, $N_r(x)$ Contains some $\alpha \neq X$ in A.

(ii) A point $x \in A$ is an isolated point of A if ... it is not a limit point of A.

(b) (9 points) Now, suppose that $X = \mathbb{R}$, and d(x,y) = |x-y| (that is, the *Euclidean* metric). Write down the limit points, isolated points, and interior points of each of the following sets: \mathbb{Z} , \mathbb{Q} , and \mathbb{R} . (No proofs needed.)

·	7	Q	IR
limit pt,	none	IR	IR
isolated pt,	7	None	none
interior pts	None	Vovr	R

Written by M. Macauley

6

(c) (9 points) Finally, consider the discrete metric on R, defined as

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y. \end{cases}$$

Again, characterize the limit points, isolated points, and interior points of each of the following sets: Z, Q, and R. (No proof needed.)

	Z	Q	TR
limit pts	Nore	None	none
isolated pts	Z	Q	112
interior pts	7	Q	P

 \forall Note that for any $x \in \mathbb{R}$, $N_{Y_2}(x) = \{x\}$, so every point is both isolated and interior of every nonempty set.